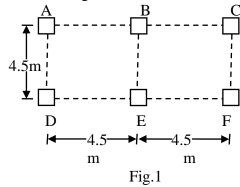
[Total No. of Printed Pages:2]

CODE NO:- Z-398

FACULTY OF ENGINEERING & TECHNOLOGY

B.E(Civil)Year Examination June– 2015 EL-II Advanced Structures (Revised)

[Time: Four *Hours*]


[Max. Marks: 80]

"Please check whether you have got the right question paper."

- i) Solve <u>any two</u> questions from each section.
- ii) Uses of ZS 456 & non-programmable calculate is allowed.

SECTION A

- Q.1 Fig(1)shows a layout of the columns of building .The outer columns are 400×900 mm in size & carry a load of 600 KN each .The inner columns are 450×450 mm in size & carries a load of 800KN each . In addition to this it is subjected to moment of 1000KN-m due to wind load acting along the length of building & SBC of soil is 100KN/M². Use M20 Fe 415 grade steel Design the following
 - i) Slab
 - ii) Secondary beam BE.
 - iii) Calculate the loading on main beam ABC.

- Q.2 a) Design a pile under a column transmitting an axial load of 600KN. The pile is to be driven to a hard stratum available at depth of 8m . Use M_{20} concrete & Fe 415 steel.
 - b) A.R.C column 400mm×400mm carrying a load of 600KN is supported on three piles 400mm×400mm 10 in section .The centre to centre distance between the piles is 105m. Design a suitable pile cap .Use M_{20} concrete & Fe 415 steel .Show reinforcement detailing.
- Q.3 A cylindrical water tank is 6.5 m in diameter. Contains water upto a height of 2.8m excluding free bound 20 . Tank rests on a ring beam at a bottom 6.5m in diameter .Dead weight of various components of water tank excluding water load transferred to ring beam is 50 kn/m Design the ring beam .Use free board 0.2m .Use M_{20} & Fe 415 . The ring beam is supported by eight beam is supported by eight symmetrically placed columns .

No. of Columns	2Ø	eta_s	eta_m	eta_T	Ø
8	45	0.066	0.033	0.005	9.5°

Show the reinforcement details.

SECTION-B

Q.4	a)	Explain	the following terms with reference to bridges.	12
		i)	Distribution of wheel load on slab	
		ii)	Dispersion of load along span	
		iii)	Ground contact area	
		iv)	IRC loading	
	b)	Derive	the relation for edge shear in folded plates.	08
Q.5	a)	What a	re types of folded plates, their components & their action & assumption made in analysis of plates.	10
	b)	Explain	various types of transmission towers& their utility in load resistance.	10
Q.6	Í	deep ,3 load at	orced concrete deep girder is continuous overs spans of 9m apart from Centre to center. It is 4.5 m 00mm thick & t5he columns are 900mm in width ,If the girder supports a uniformly distributed o 200KN/m including its own weight design the beam ,using M_{20} concrete & Fe415 steel .Show cement detailing .	12
			re the design of deep beam by British code & American code	08