[Total No. of Printed Pages:2]

# **CODE NO:- Z-282**

**FACULTY OF ENGINEERING & TECHNOLOGY** 

## **B.E**(Civil)Year Examination June-2015

**Structural Mechanics** 

(**Revised**)

[Time: Three Hours]

[Max. Marks: 80]

"Please check whether you have got the right question paper."

- i) Answer any three questions from each section
- *ii)* Assume suitable data wherever necessary.

# SECTION A

Q.1 a) Explain plane strain and plain stress condition and derive stress- strain relationship for the same. 07 b) The stress components at a point in a body subjected to two dimensional state of stress are given by 07

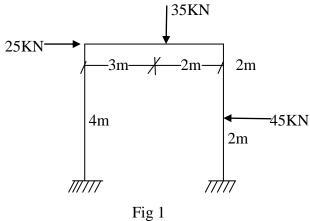
$$6_x = 2x^2y + 3xy$$
  

$$6_y = 2x^3 + 5xy^2$$
  

$$Z_{xy} = 4x^2y^2$$

Determine whether given state of stress is in equilibrium or not at point (-2,3)

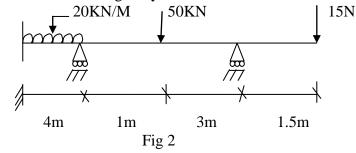
Q.2 State the assumptions in Kirchoffs thin plate theory and drive the governing differential equation of plate 13 subjected to lateral load.


| 03  | Drive the equation of a circular plate for deflection carrying point load at its centre | 13 |
|-----|-----------------------------------------------------------------------------------------|----|
| Q.3 | Drive the equation of a circular plate for denection carrying point load at its centre  | 15 |
|     |                                                                                         |    |

- Q.4 a) Drive strain compatibility equations for an element of elastic body in three dimensional state of stress. 07 Explain the importance of these equations. 06
  - b) Explain various boundary conditions for rectangular plates.
- Q.5 Find the transverse deflection w for the simply supported circular plate with hole of radius a subjected to 13 shearing forces along the inner boundaries. Hence find expressions for  $M_r$  and  $m_0$

#### **SECTION-B**

|     | <ul><li>a) Differentiates between membrane theory and bending theory of shells.</li><li>b) Explain in brief Degree of kinematic indeterminacy.</li><li>c) Distinguish between flexibility and stiffness matrix methods of analysis of structure.</li></ul> | 05<br>04<br>05 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Q.7 | Using membrane theory, derive the equations of equilibrium for shell of revolation.                                                                                                                                                                        | 13             |


### Q.8 Analysis the frame shown in fig.1 by stiffness method. Draw BWD



Q.9 a) Which method of following is advantageous and how?
i) Flexibility method
ii) Stiffness method

#### b) Explain stepwise procedure of finite Element Analysis

Q.10 Analyze the beam showed fig. 2 by stiffness matrix method.



07

13