CODE NO:- K-32 FACULTY OF ENGINEERING AND TECHNOLOGY T.E. (CIVIL) Examination Nov/Dec 2015 Design of Structures - II (RCC) (Revised)

		(Revised)	
[Tin	ie: '	Three Hours] [Max. Marks	s: 80
N.B		"Please check whether you have got the right question paper." i) Q.No.1 and Q.No.6 are compulsory. ii) Attempt any two questions from remaining of each section. iii) Use IS: 456-2000 is allowed. iv) Assume suitable data, if required and state it clearly. SECTION-A	
Q1.	A B	 Explain the following terms. i) Limit state method and working stress method. ii) Necessity of using steel in compression region. iii) Anchorage bond and development length. Derive from first principle, the values of design parameters (constants) Kumax, Rumax and ptmax for a balance section of concrete grade M20 and steel grade Fe 500. 	02 02 02 04
Q.2	A B	What is redistribution of moments and what are the IS requirements for it. A R.C.C beam of rectangular section 230mm×400mm width an effective cover 40mm. find the maximum imposed uniformly distributed load carrying capacity of beam if it is simply supposed over a span of 3.5m. Use M20 and Fe415 grades.	03 12
Q.3	A B	Explain the different types of crack. Design a rectangular beam 230mm wide & 600mm deep with an effective span is 5m. The superimposed load on the beam is 45KN/m. use M20 and Fe415 grades. Assume the effective cove is 50mm.	03 12
Q.4	A B	Write minimum percentage of reinforcement required in beams & slabs for crack control. A T beam consists of a flange 1200×110mm. the depth of the beam is 600mm up to the centre of steel and width of web is 300mm. calculate the ultimate M.R of a T-beam, if area of tensile reinforcement is 2900mm ² . Use M20 and Fe500 grades.	03 12
Q.5	A B	Write short term & ling term deflection. Design a shear reinforcement for a beam with 230mm wide & 450mm deep(effectively). The beam is subjected to a shear of 150KN. The grade of concre is M25 & grade of steel is Fe415 & the percentage of steel is 1.5.	03 12
Q.6	A B	Write functions of longitudinal & transverse reinforcement in R.C.C column. Explain importance of ductility in seismic design. Also write the names of IS code available related to earthquake.	03 04
	С	Explain in detail the Pu-Mu interaction diagram.	03
07		Design a reinforced concrete slab for a room of clear dimensions $4m \times 5m$. The slab is supported on walls of	15

Q.7 Design a reinforced concrete slab for a room of clear dimensions 4m×5m. The slab is supported on walls of 15 width 280mm. the slab is carrying a live load 4KN/m² & floor finish 0.8Kn/m². Use M20 and Fe415 grades. The corners of slab are held down.

Q.8	А	Explain the difference between short column & long column.	04
	В	Design a short R.C.C column to carry an axial load of 1600KN. It is 4m long effectively held in position &	11
		restrained against rotation at both ends. Use M20 concrete & Fe415 steel.	
Q.9		Design a dog-legged staircase with the following data.	15
		i) Size of room =2m×4m	
		ii) Column size =230mm×380mm	
		iii) Floor to floor height =3m	
		iv) Live load =3KN/m ² .	
		v) Floor finish=1KN/m ² .	
		Use M20 concrete & Fe415 steel.	
Q.1)	Design an isolated square footing to carry a load of 1100KN from column. The columns having	15
		detail reinforcements	

detail reinforcements.