[Total No. of Printed Pages:2]

CODE NO:- Z-302

FACULTY OF CIVIL ENGINEERING

T.E (Civil)Year Examination - June- 2015

Design Of Structures-II(RCC)

(Revised)

[Tin	ne: T	hree <i>Hours</i>] [Max. Marks: 8	30]
		"Please check whether you have got the right question paper."	-
1 V.D		<i>i)</i> Question No.1 and 6 are computed y.	
		iii) Assume suitable data if required and state it clearly	
		iv) Use IS: 456-2000 is allowed.	
		SECTION-A	
Q.1	a)	Explain in detail stress block parameter.	03
	b)	What is redistribution of moment?	03
	c)	What are the various types of shear failure in R.C. section? Explain in detail.	04
Q.2	a)	What are the types of deflection? Explain in detail.	03
	b)	Derive from first principle, the values of design parameters (constants)Kumax, Rumax, ptmax. For a balanced section of concrete of grade M_{25} and steel grade Fe 415.	ı 04
	c)	An R.C.C beam 200MM ×400MM (effective) is reinforced with 3 bars of 16MM ϕ bars of Fe415 steel. Find the ultimate uniformly distributed load which the beam can carry safely over a span of 5M. Take M ₂₀ grade of concrete.	08
Q.3	a)	What is mean by cracking? Explain the types of cracks.	03
	b)	A beam 250MM×560MM effective is subjected to a factored bending moment 310KN. Determine	12
		the area of steel for doubly reinforced section. Use M_{20} concrete and Fe250 steel. Assume d'=60MM.	
Q.4	a) b)	Why is the provision of minimum shear reinforcement compulsory in reinforced concrete beam? An R.C beam 350MM wide and 500MM effective depth is reinforced with 4 bars of 25mm dia. It is having a u. d. l of 75KN/M. over a span of 7.0m. Design the shear reinforcement using vertical stirrups and bent up bars. Use M_{20} and Fe415 grades.	03 12
Q.5		Design the T-beam having 8M clear span, simply supported on wall 230MM wide, is subjected to a dead load of 23KN/M and a live load of 25KN/M. the width of flange = 1300MM, overall depth of beam = 550MM. depth of beam is 110MM and width of web = 350MM. use M_{20} & Fe415 grades. SECTION -B	15
Q.6		Explain the following terms	10
		i) Development length and necessity of the check.	
		ii) Necessity of torsion reinforcement in the slab.	
		111) Relationship for the load carrying capacity of an axially loaded short column.	
		v) One-way slab and two-way slab.	
Q.7		Design a reinforcement concrete slab for a room $4M \times 6.5M$ supported on a beam of width 250MM. the slab is continuous over all supports, carrying a live load of $4KN/M^2$ &floot finish is $0.9KN/M^2$. Assume mild exposure condition. Take M_{20} & Fe415 grades.	15

- Q.8 Design a dog legged stair-case for a residential building having a room size 5M×2.2M. Floor to floor 15 height is 3M. The column size 230MM×380MM. take live load 3KN/M²& floor finsh 1KN/M². Use M₂₀ and Fe415 grades.
- Q.9 Design an isolated footing for a square column 450MM×450MM reinforcement with 8 bars of 15 25MM dia. And carrying a load of 2000KN S.B.C of soil is 300KN/M² at a depth of 1.5M below ground. Assume M₂₀ grade of concrete & Fe415 grade of steel. Show the detailed reinforcement.
- Q.10 a) State the guidelines for shear design as per the codes available for seismic design.
 Design a circular column of diameter 400MM subjected to a lo0ad of 1250KN. The column is 12 having a spiral ties. The column is 3M long & effectively held in position at both ends but not restrained against rotation. Take M₂₀& Fe415 grades.