SUBJECT CODE: 44

FACULTY OF ENGINEERING AND TECHNOLOGY

S.E. (CSE/IT) Examination Nov/Dec 2015

Discrete Mathematics

(Revised)

[Time: Three Hours]	[Max. Marks: 80]			
"Please check whether you have got the right question paper."				
N.B i) Questions 1 from section A & Question 6 from section B are compulsory.				
ii) Assume suitable data if necessary.				
iii) Solve any two questions from each section from remaining questions.				
Section – A				
 Q1. Solve <u>any five</u> a) Explain discrete probability. b) Explain distributive law of sets. c) Explain power of set with example d) Write the following sets in tabular form i) A = {x : x is a divisor of 24} ii) B = {x : x is a multiple of 3 0r 5} e) Give an example of converse and contrapositive of a proposition f) Form the conjunction of p & q of the following i) p: it is cold q: it is raining 	10			
ii) p: $5x + 6 = 26$ q: $x > 3$ g) Explain existential quantifier h) What is logical equivalence Q.2 a) $(A \cap \overline{C}) C(B \cap \overline{C})$ show that $A CB$ by using Venn-diagram	07			
b) A card is draw from a deck of cards find the probability of getting ace or a spade card	08			
Q.3 a) Show that $1^3 + 2^3 + \dots + n^3 = (1+2+\dots+n)^2$ using mathematical induction for $n \ge 1$	08			
Explain universal modus ponens and universal modus tollens with example	07			
Q.4 a) Construct the truth table for the following statement to determine tautology or contradiction				
$(C \wedge P \wedge q) \vee (q \wedge r)) \rightarrow r$ b) Let k (x): x is student M (x): x I cleaver	08			
N (x): x is successful				
Express the following using quantifier				
i) There exists a student ii) Some students are cleaver. iii) Some students are note successful	ıl.			
Q.5 a) Show that t is a valid conclusion from the premises p \Rightarrow q, q \Rightarrow r , r \Rightarrow s , \sim S and pvt.	07			
b) Show that p \Leftrightarrow q \equiv (pvq) \Rightarrow (p \wedge q) using algebra of proposition	08			

Section -B

Q.6	Solve <u>a</u>	Solve any five	
	b) c)	Let A = {7, 8, 9} determine all the partitions of set A Explain range & domain of a function Give an example of a relation which is i) reflexive and symmetric but not transitive ii) Reflexive and transitive but neither symmetric nor anti symmetric Explain zero – one matrix representation of a graph with example Find the hamming weight of the given words i) 1010101	
		ii) 11100111 Explain ring & its properties Explain homomorphism with example What left coset & right coset give example	
Q.7		er f, g & h, all functions on the integers by $f(n) = n^2$, $g(n) = n + 1$ and $h(n) = n - 1$ hofog (ii) gofoh (iii) fogoh (iv) hofof	08
		a relation on the set of integers 2 and it defined by $R = \{(x, y) : x \in z, (x-y) \text{ is derisible by 6}\}$ then prove that R is ivalence relation & determine equivalence classes & partitions.	07
Q.8	a) Explair have a	pigeonhole principle and show that if any five integers from 1 to 8 are chosen then at least two of them will sum 9	08
	b) explair	Hasse diagram with chain and antichain with example	07
Q.9	a) Explair	decoding with coset leaders in detail with example	08
	b) Explair	integral domain and field in detail	07
Q.10	a) Show t	hat (2,5) encoding function $E: B^2 \rightarrow : B^5$ defined by	08
	E (00) =	= 00000 E(01) = 01110	
	E (10) =	= 10101 E (11) = 11011	
	Is a gro	oup code	
	b) Explair	elements of coding theory in detail	07

k-44