CODE NO:- K-35 FACULTY OF ENGINEERING AND TECHNOLOGY T.E.(CSE/IT) Examination Nov/Dec 2015 Design & Analysis of Algorithms (Revised)

[Time:	Three H	ours]	[Max. Marks: 80]
N.B		"Please check whether you have got the right question paper." i) Q.No.1 and Q.No.6 are compulsory. ii) Attempt any two questions from remaining questions SECTION-A	
Q.1	Attemp a) b) c) d) e) f) g)	ot <u>any five</u> Define an algorithm. Write characteristics of an algorithm. How is efficiency of an algorithm defined Explain greedy method. What is merge sort? Is insertion sort better than merge sort? Define feasible & optimal solution What is minimum cost spanning tree What is job sequencing with deadline	10
Q.2	a)	How to measure performance of an algorithm. Find time complexity of code; For $i = 1$ to n step 1 do for $j = 1$ to n step 1 do s(i,j) = a(i,j) + b(i,j)	08
Q.3	b) a)	What is searching? Explain binary search using divide & conquer Sort the given data using Quick sort 35, 20, 25, 30, 15, 10, 40, 45	07 08
Q.4	b) a) b)	Write an algorithm to find maximum & minimum item in a list using DNCWrite an algorithm to find single source shortest pathFind optimal merge patterns for ten files whose lengths are:{28, 32, 12, 5, 84, 53, 91, 35, 3, 11]	07 07 08
Q.5	a) b)	Explain Huffman coding with an example Find an optimal solution for knapsack instance $n = 7$, $m = 15$ $(P1, P2, P3, P4, P5, P6, P7) = \{10, 5, 15, 7, 6, 18, 3\}$ $(w1, w2, w3, w4, w5, w6, w7) = \{2,3,5,7,1,4,1\}$ SECTION – B	07 08
Q.6	Attemp a) b) c) d) e) f) g)	ot <u>any five</u> What is difference between greedy method & dynamic programming What is articulation point Explain implicit & explicit constraints of backtracking What is Hamiltonian cycle Explain branch & bound method. What are permutation & subset problem Explain live, E & dead node.	10
Q.7	a)	Find a minimum cost path from s to t in multistage graph given below.	10

	b)	Explain tree traversal methods	05
Q.8	a) b)	Solve 4 – Queens problem using backtracking Let $w = \{5, 7, 10, 12, 15, 18, 20\}$ $m = 35$. Solve sum of subsets & draw state space tree	08 07
Q.9	a)	Determine optimal binary search tree for {char, int, float} where $P(1:3) = (0.5, 0.1, 0.05) q(0:4) = \{0.15, 0.1, 0.05, .05\}$	10
	b)	Explain graph coloring using backtracking	05
Q.10	a)	Solve the travelling salesman problem defined by cost matrix: $ \begin{bmatrix} \infty & 7 & 3 & 12 & 8\\ 3 & \infty & 6 & 14 & 9\\ 5 & 8 & \infty & 6 & 18\\ 9 & 3 & 5 & \infty & 11\\ 18 & 14 & 9 & 8 & \infty \end{bmatrix} $	10
	b)	Explain Least cost branch & bound & search	05