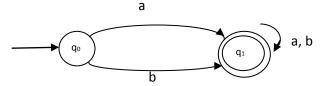
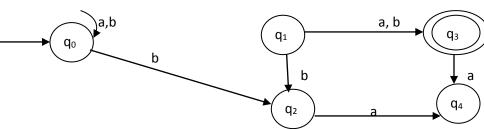
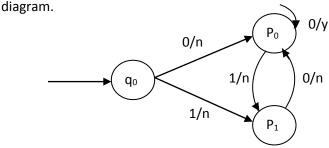
SUBJECT CODE :- 114 FACULTY OF ENGINEERING AND TECHNOLOGY T.E.(CSE/IT) Examination Nov/Dec 2015 Theory of Computation (Revised)


[Time: Three Hours]

"Please check whether you have got the right question paper."


- N.B i) Q.No.1 and Q.No.6 are compulsory.
 - ii) Attempt any two questions from Q.No.2 to Q.No5 and two questions from Q.No.7 to Q.No.10 of each section.iii) Figures to the right indicate full marks.

SECTION-A


- Q1. Attempt any five from the following
 - 1) Define deterministic finite automata with suitable example
 - 2) Determine the regular expression or language given by the following finite automata.

- 3) Define derivation tree in CFG
- 4) Explain closure properties of regular expressions
- 5) Define CFG. Give an example.
- 6) Define mealy machine and more machine
- 7) Find the regular expression for the set of strings over {0, 1} with exactly two OS.
- 8) Define null closure of set of states in NFA with null moves.
- Q.2 a) Construct a DNA equivalent to the MDFA whose transition diagram is given by following fig.

b) Construct a more machine which is equivalent to the mealy machine described by the following transition

- Q.3 a) Construct FA for the given regular expression: $r = 01 + (01)^*$
 - b) Convert the given NFA to equivalent DFA.

K-2015

ac4fd94faaab640f273021ebf842cd9b

[Max. Marks: 80]

08

07

10

States/ ϵ	а	b
$\rightarrow q_0$	$\{q_0, q_1\}$	$\{q_2\}$
q_1	$\{q_0\}$	$\{q_1\}$
q_2	-	$\{q_0, q_1\}$

a) Construct a minimum state automation equivalent to a DFA whose transition table is defined by following Q.4 08 table.

States	а	b
$\rightarrow q_0$	q_1	q_2
q_1	q_4	q_3
q_2	q_4	q_3
q_3	q_5	q_6
q_4	q_7	q_6
q_5	q_3	q_6
q_6	q_6	q_6
q_7	q_4	q_6

b)	Consider the grammar:

	 s → sbs/a.show that this is an ambiguous grammar. For the string abababa, find out: i) Parse trees ii) Leftmost derivation iii) Rightmost derivation 	07
Q.5	Write short notes on	15
	i) Applications of IA.	
	ii) Pumping lemma for regular language	
	iii) Chomsky classification of languages	
	SECTION-B	40
Q.6	Attempt any five questions from the following	10
	1) Deterministic PDA.	
	 2) Explain the two normal forms for CFG. 2) State the explication of TM. 	
	 3) State the application of TM. 4) Define writering dustion and writering in CEC 	
	 4) Define unit production and null production in CFG. 5) Evaluate the component of DDA with post diagram. 	
	5) Explain the component of PDA with neat diagram	
	6) Define the language of a PDA.	
	7) What is halting problem of TM?	
	8) Define instantaneous description for TM.	
Q.7	a) Convert the following grammar into CNF:	08
	$s \rightarrow a AD, A \rightarrow aB/bAB,$	
	$B \rightarrow b, \ D \rightarrow d.$	
	b) Construct a PDA A equivalent to the following context –free grammar:	07
	$s \rightarrow OBB, B \rightarrow OS/IS/O$.test whether 010^4 is in N(A)	

Q.8	a) b)	Design a Turing machine to recognize all strings consisting of an even number of is Show that $L = \{a^p P \text{ is prime }\}$ is not context free.	08 07
Q.9		Explain deterministic PDA. How does it differ from non deterministic PDA? Explain in detail the model of linear bounded automata	08 07
Q.10	1) 2)	hort notes on Halting problem of TM Decision problem in CFL	15
	3)	PDA and acceptance by PDA.	