SUBJECT CODE NO:- E-95

FACULTY OF ENGINEERING AND TECHNOLOGY

T.E.(CSE/IT) Examination Nov/Dec 2017

Theory of Computation (REVISED)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

- N.B i. Q. No. 1 and Q.No.6 are compulsory.
 - ii. Attempt any two questions from Q.No.2 to Q.No.5 and two questions from Q.No.7 to Q.No.10 of each section.
 - iii. Figures to the right indicate full marks.

SECTION A

Q.1 Attempt any five questions from the following:

a) Determine whether the following DFA accepts the string 011101 or not.

- b) Define context-free grammar with suitable example.
- c) Differentiate between NFA and DFA.
- d) Find regular expression for set of all strings over {0, 1} ending with 11 and beginning with 100.
- e) State Arden's Theorem. Where is it required?
- f) Let $G = (\{S\}, \{a,b,t,*\}, P,S)$ where P consists of : $S \longrightarrow S + S \mid S*S \mid a \mid b$. Derive a + a*b.
- g) Construct a finite automata for the regular expression 10(0+1)01.
- h) Define Moore Machine with an example.

Q.2 a) Construct DFA equivalent to given NFA:

 $(\{p, q, r, s, t\}, \{0,1\}, \delta, p, \{s\})$

Where δ is given by

States/Σ	0 7 7 7 1		
Post	{p,t}	{p, q}	
o que la companya de	Ø	{r}	
3,000	{r}	{r}	
\$ *\$ S	{s}	{s}	
	⋄ {s}	Ø	

b) Define ambiguity in CFG. Show that the following CFG is ambiguous:

 $S \longrightarrow a B | a A, A \longrightarrow a AB | a | b, B \longrightarrow Abb | b.$

08

10

- Q.3 a) Describe the closure properties of regular languages.
 - b) Construct a Moore machine equivalent to following Mealy machine:

Present		Next state		
State	a=0	Output	a=1	Output
→ q ₁	q_1	1	q_2	
q_2	q ₄	1 2	q_4	
q_3	q_2	1 3	q 3	
q_4	q_3	0,000	9107	

07

08

07

08

08

07

- Q.4 a) Show that $L=\{a^p \mid p \text{ is a prime}\}\$ is not regular language.
 - b) Let $G=S\to 0B|1A, A\to 0|0S|1AA, B\to 1|1S|0BB$, for string 11001010,

Find: i) leftmost derivation,

- ii) rightmost derivation,
- iii) parse tree
- Q.5 a) Draw finite automata for the following transition table & construct minimum state automata equivalent to it:

States/Σ		
A	B	2
B	D	E
		E G
n		E
Ė	E	G
F	D	E
G	F	G

b) Consider the following finite automata prove that the strings recognized are: (a + a(b + aa)*b)*a(b + aa)*a

SECTION B

Q.6 Attempt any five question from the following:

10

- a) Construct PDA for the following CFG: $s \rightarrow a |a S| bSS | SSb | SbS$.
- b) Define Chomsky Normal form with suitable example.
- c) Differentiate between recursive & recursively enumerable languages.
- d) Determine whether the string 1111 is accepted by the following Turing machine.

- e) Discuss halting problem in Turing machine.
- f) Define deterministic pushdown automata formally.
- g) Explain decision problems involving context-free languages.
- h) Let G be $S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow C|b$, $C \rightarrow D$, $D \rightarrow E$ & $E \rightarrow a$. Eliminate unit productions and get equivalent grammar.
- Q.7 a) Find reduced grammar equivalent to G whose productions are: 07 S→AB|CA, B→BC|AB, A→a, C→aB|b.
 - b) Construct a grammar in Greibach normal form equivalent to the grammar.
 08
 S→AA|a, A→SS|b.
- Q.8 a) Construct a PDA for the language $L=\{ww^R \mid w \in \{a,b\} * w^R \text{ is reverse of } w\}$
 - b) Explain various programming techniques for Turing machine with suitable example. 07

07 Q.9 a) Design a TM over $\{1, b\}$ which can compute a concatenation function over $\Sigma = \{1\}$.

b) Construct a CFG 'G' which accepts N(A), where, $A=(\{q_0,q_1\},\{a,b\},\{z,z_0\},\delta,q_0,z_0,\emptyset)$ and δ 08 is given by-

$$\delta(q_0,b,z_0) = \{(q_0,zz_0)\}$$

$$\delta(q_0, \Lambda, z_0) = \{(q_0, \Lambda)\}$$

$$\delta(q_0,b,z) = \{(q_0,zz)\}$$

$$\delta(q_0,a,z) = \{(q_1,z)\}$$

$$\delta(q_1,b,z) = \{(q_1, \Lambda)\}$$

$$\delta(q_1,a,z_0) = \{(q_0,z_0)\}$$

Q.10 a) Explain the model of linear bounded automata in detail. 07

b) Find a grammar in CNF equivalent to the following grammar: $S \rightarrow aAbB$, $A \rightarrow aA \mid a, B \rightarrow bB \mid b$

08