SUBJECT CODE:- 308 FACULTY OF ENGINEERING AND TECHNOLOGY B.E.(EEE/EEP/EE) Examination Nov/Dec 2015 Digital Signal Processing (Revised)

[Time: Three Hours]

[Max. Marks: 80]

07

06

07

06

07

06

"Please check whether you have got the right question paper."

- N.B i) Solve ant three questions from each section.
 - ii) Assume suitable data wherever necessary.

Section A

Q.1	a)	Consider the analog signal. $x_a(t) = 3cos. 100\pi$
-----	----	---

- Determine the minimum sampling rate required to avoid aliaing
 Suppose that the signal is sampled at the rate Fs=200Hz. What is the discrete time. Signal obtained after sampling?
- 3) What is the discrete time signal if the above signal is sampled at Fs=75Hz?
- b) Define following terms with suitable example1) Signal 2) System 3) Signal Processing
- Q.2 a) State and explain sampling Theorem.
 - b) Differentiate following signals with suitable example.
 - 1) Multichannel and multidimensional signals.
 - 2) Continuous time and discrete time signals.
 - 3) Continuous value and discrete value signals
- Q.3 a) A discrete time signal is shown in fig. 1 sketch following signals.
 - 1) X(n-2).
 - 2) X(4-n).
 - 3) X(n-1) 8(n-3)
 - 4) X(n) u(2-n).

	b)	Prove the following equation $TD \{FD(x(n))\} \neq FD \{TD(x(n))\}$. where $TD - time - delay operation$	
~ .	,	FD – folding operation	
Q.4	a)	Find the z-transform & ROC of the following sequence. $x(n) = a^n u(n) + b^n u(-n-1)$	07
	b)	State and prove any three properties of Z- transform.	06
Q.5 Wri	ite s	hort note on (<u>any two</u>)	
	1)	Inverse z-transform method by partial fraction expansion.	07
	2)	Recursive & non recursive discrete time system.	07
	3)	Block – diagram of digital signal processing.	06

SECTION-B

Q.6	a)	State & explain the properties of Fourier transform.	07
	b)	Give the relationship between z-transform and Fourier transform	06
Q.7	a)	State and explain the properties of DFT.	07
	b)	Find 4 point DFT of following sequence $x(n) = \{1,2,3,1\}$	06
Q.8	a)	Determine correlation of the sequence given	07
		X(n)={-3,-2,1,4,8,-3}	
		\uparrow	
		Y(n)={1,1,1,-1,2,} ↑	
	b)	Find IDFT of Y(k)={1,0,1,0}	06
Q.9	a)	Draw and explain the direct form structure of FIR filter.	06
	b)	Find convolution of following signals. $x(n) = \{1, -2, 3\}, h(n) = \{0, 0, 1, 1, 1, 1\}$	07
Q.10 W	rite s	hort note on (<u>any two</u>)	
	1)	Cascade form of FIR filter	07
	2)	Lattice structures	07
	3)	Signal flow graph	06