SUBJECT CODE NO:- E-284

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E.(EEE/EEP/EE) Examination Nov/Dec 2017 Digital Signal Processing

(REVISED)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

N.B

- 1) Solve Any three questions from each section.
 - 2) Assume suitable data wherever necessary.

Section A

- Q.1 Solve.
 - 1) Define power and energy signals. 03
 - 2) State properties of discrete time sinusoids.
 - 3) Define quantization noise and resolution.
 - 4) What is minimum sampling frequency of $x(t) = 4\cos 100\pi t$ to avoid aliasing.

03

06

- 5) State properties of convolution.
- Q.2 a) Perform the following operation on $x(n) = \{1,2,3,4,5,4,3,2,1\}$ that time scaling by 2 and $\frac{1}{2}$. 06
 - b) Determine the response of following system to the input signal x(n) = |n| $-3 \le n \le 07$ = 0 otherwise
 - i) Moving average filter
 - ii) Accumulator.
- Q.3 a) Compute convolution. y(n) = x(n) * h(n) of following signals. $x(n) = \{0,1,4,-3\}$ 06

and
$$h(n) = \{1,0,-1,-1\}$$

b) Consider the interconnection of LTI system as shown in fig.

- a) Express the overall impulse response in terms of $h_1(n)$, $h_2(n)$, $h_3(n)$ and $h_4(n)$.
- b) Determine h(n), when-

$$h_1(n) = \{1,2,1\}$$

$$h_2(n) = \{1,1,2\}$$

$$h_3(n) = \{2,1,1\}$$

$$h_4(n) = \{2,2,1\}$$

Q.4		Draw and explain block-diagram of Digital signal processing. State and explain three characterizing properties of 'Discrete Time signals'	06 07
Q.5	1) 2)	ce short note on- (any two) Classification of systems Correlation Advantages of digital over analog signal processing.	14
		Section B	
Q.6	b)	When the DFT x(k) of a sequence x(n) is real and when it is imaginary? Differentiate between linear and circular convolution. What is the order of filter if $y(n) = \sum_{K=0}^{N-1} x(k)h(n-k)$	03 03 01
		What is the ROC of infinite anticausal signals. State what is twiddle factor & what is its importance. What is meant by pole and zero.	01 03 02
Q.7		Find L ₁ – point DFT of $x(n) = \{1, -2, 3, 4\}$ Determine IDFT of $x(k) = \{1, -2, -j, 0, -2 + j\}$	06 07
Q.8		Determine the inverse Z- transform of $x(z) = \frac{z^2}{0.5-1.5z+z^2}$ for ROC $ z < 0.5$ using long division method. Compute convolution $x(n)$ of the signals. $x_1(n) = \{1, -2, 1\}, x_2(n) = 1$	07
Q.9		= 0 elsewhere Establish relation between DFT and z-transform. State properties of DFT. Prove at least three properties in detail.	06 07
Q.10	1) 2)	e short note on. (any two) Inverse Z-transform by partial fraction method. FIR. Filter structures. Signal flow graphs.	14