N.B

SUBJECT CODE NO:- P-8051 FACULTY OF ENGINEERING AND TECHNOLOGY

M.E. (Electrical Power System) Examination May/June 2017 Computer Aided Power System Analysis (Revised)

[Time : Three Hours] [Max Marks :80]

Please check whether you have got the right question paper.

- i) Solve any two questions from each section.
- ii) Assume suitable data if required Section A
- Q.1 a) The one line diagram of a power system shown in Fig.1. the three phase power and line voltage ranges 10 are given below

Transformer:100MVA 23/115kv x=20%

Line: $Z=j65\Omega$.

Load bus2 (S_2)=150mw+j5MVAr. Load bus3 (S_3)= OMW+j20 MVAr.

It is required to maintain the voltage at bus 3 at 115<0° Kv. Detrmine

the voltage at buses 1&2

fig.1 Q 1(a)

b) Derive the symmetrical component for η phase system
 Q.2 a) Analyze the single line open fault
 b) Determine the sequence network for double line to ground fault on a three phase generator with fault 10 on phases b & c through an impedance Z_f to ground. Assuming the generator is initially on no load.
 Q.3 a) Derive the sequence impedance of three winding transformer.
 b) The reactance data for a power system shown in fig.2 in PU on a common base is as follows.

2017

Item	X^1	X ²	X^0
G_1	0.1	0.1	0.05
G_2	0.1	0.1	0.05
T_1	0.25	0.25	0.25
T_2	0.25	0.25	0.25
Line 1-2	0.3	0.3	0.5

Compute the fault current in PU for a single file to ground fault at bus 1

- Q.4 a) What do you understood by change of symmetry? Explain its importance in analyzing unbalanced 10 faults.
 - b) What is kron's transformation matrix? Explain the use of this matrix to analyze SLG fault.
 - a) What is simultaneous fault? How to analyze simultaneous fault using two part network theory?
 - b) A simple power system is shown in fig with simultaneous faults indicated by X's at faults points F and 10 F'. the following system data is known:

Generator(A): $Z_1''=Z_2=j 0.12$, $Z_0=j0.1$, $E_A=1.1<<30^\circ$

Generator(B): $Z_1''=Z_2=j 0.15$, $Z_0=j0.13$, $E_B=1<0^\circ$

Transformer (T_1) $Z_1 = Z_2 = Z_0 = j0.10$

Transformer (T_2) $Z_1 = Z_2 = Z_0 = j0.12$

Transmission line $Z_1 = Z_2 = j0.5$, $Z_0 = j1.0$

20

Fig.3 Q.5(b)

- Q.6 Write short notes. (10x2)
 - i) Decoupled power flow method.
 - ii) Comparison of admittance and impedance matrix techniques.

2017

Q.5