SUBJECT CODE :-45

FACULTY OF ENGINEERING AND TECHNOLOGY

S.E. (EEP/EE/EEE) Examination Nov/Dec 2015

A.C. Machines

(Revised)

[Time: Three Hours]

[Max. Marks: 80]

10

07

"Please check whether you have got the right question paper."

N.B i) Q.No.1 and Q.No.6 are compulsory.

ii) Solve any two questions from Q. No. 2 to 5

iii) Solve any two questions from Q. No. 7 to 10

iv) Assume suitable data, if necessary.

Section – A

- Q1. Solve <u>any five</u> of the following
 - a) Why the slots on the rotor of an induction motor are usually skewed?
 - b) Which induction motor is having high starting torque? Why?
 - c) The frequency of the e.m. f. in the stator of 4 pole induction motor is 50Hz, and that in rotor is 1.5Hz. What is the slip and at what speed is the motor running?
 - d) Write comparison between squirrel cage rotor and phase wound rotor.
 - e) Define the term cogging.
 - f) Stat why the single phase induction motor do not have the starting torque?
 - g) What type of motor would you use in the following application: Washing machine, sewing machine? State your reason.
 - h) Write application of Hysteresis motor.

Q.2 a) In case of an induction motor, obtain an expression of rotor copper loss in terms of rotor input.

- b) A 6 pole, 50H_z, 3-ph induction motor running on full load develops a useful torque of 150Nm at a rotor frequency of 08 1.5H_z. calculate the shaft power output. if the mechanical torque lost in friction be 10 Nm, determine,
 - i) Rotor copper loss.
 - ii) The input to the motor
 - iii) The efficiency

where the total stator loss is 700 W.

Q.3	a) Explain in detail the power flow diagram of an induction motor.		
Q.4	b) With neat circuit diagram explain the working of Alto- Transformer starter for 3-ph induction motor.		
	a) Explain in detail the principle of operation of single phase inductor start induction run motor.		
	b) Develop an equivalent circuit (circuit model) of a single – phase, single – winding Induction motor based on,	08	
Q.5	Two – revolving – field theory.		
	Write short note on the following. (any 3)	15	
	a) Speed control of induction motor by supply frequency control method.		

- b) AC servo motor
- c) Hysteresis motor

c08a3559 cab 19498 d26077729 af 8 ff 1a

d) Repulsion motor

Section - B

Q.6	Solve any five of the following.		10
	a)	What is pole pitch	
	b)	Calculate the distribution factor of a 36 slots, 4 pole, single layer, 3-ph winding.	
	c)	Enlist the different methods of excitation system of alternators.	
	d)	State different methods of synchronizing the alternators.	
	e)	Write any two point of difference between salient pole and smooth cylindrical rotor.	
	f)	Define locked-rotor torque in synchronous motor.	
	g)	What is phase-swinging in synchronous motor.	
	h)	With increase in load on a synchronous motor, what is the effect on	
		i) Torque angle	
		ii) Phase angle.	
Q.7	a) With n	eat sketch explain the construction and working of 3-phase synchronous generators.	07
	b) A 3-ph per pol	ase, 50H _z , 8-pole alternator has a star-connected winding with 120 slots and 8 conductors per slots. The flux Ie is 0.05 wb, sinusoidally distributed. Determine the phase and line voltages.	08
Q.8	a) Explain	zero- power – factor method for obtaining voltage regulation in alternators	07
	b) A 3-ph armatu	ase, 10 KVA, 400V, 50H _z star- connected alternator supplies the rated load at 0.8 power factor lagging. If the are resistance is 0.5 Ω and synchronous reactance is 10 Ω . find the torque angle and voltage regulation.	08
Q.9	a) Explain	in detail the different torques in a synchronous motor.	07
	b) The eff factor. synchr	iciency of 3-phase, 400V, star-connected synchronous motor is 95% and it takes 24A at full load & unity powe What will be the induced e.m. f. and total mechanical power developed at full load and 0.9 p. f. leading? The ponous impedance per phase is $(0.2 + j2)\Omega$	r 08
Q.10) Write s	hort note on following (any 3)	15

- a) Power angle equation
- b) Armature reaction in synchronous generator
- c) Stating methods of synchronous motor
- d) Hunting and damping in synchronous motor