SUBJECT CODE NO:- P-247 FACULTY OF ENGINEERING AND TECHNOLOGY S.E. (EEP/EE/EEE) Examination May/June 2017 Network Analysis (Revised)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

- i) Use suitable data if requireds
- N.B ii) Q.No.1 from section A and Q.No.6 from section B are compulsory.
 - iii) Solve any two questions from the remaining questions in each section A and B.

Section A

- Q.1 Solve any five (2x5)
 - i. Define convolution integral
 - ii. State the Thevenin theorem.
 - iii. Define linear and nonlinear network.
 - iv. Give principle of duality
 - v. What are magnetically coupled circuits.
 - vi. State compensation theorem.
 - vii. What is significance of critical conditions
 - viii. Define and give characteristics of unit step function
- Q.2 A Write short note on duality and dual network
 - B Compute the voltage v for the coupled circuit in fig.1

Replace the network at terminals A-B with Thevenin equivalent circuit.

05

10

05

05

Fig 2

Q.3 A Find how many seconds after t=0 has the current i (t) become one half of its initial value in the given circuit in fig 3

Fig 3

B The switch is closed t=0 find value of i, $\frac{di}{dt'}\frac{d^2i}{dt^2}$ at t=0⁺. Assume initial current of inductor to be zero .

05

Fig 4

Find out the Laplace transform of $f(t) = e^{-at}$ for $t \ge 0$.

Q.4 A Find the Laplace transform of the waveform shown in fig.5

B Find inverse Laplace transform of given F(s)

$$F(s) = \frac{s+2}{s(s+3)(s+4)}$$

C Obtain the inverse Laplace transform of given F(s)

$$F(s) = \frac{s-2}{s(s+1)^3}$$
.

- Q.5 A Write the advantages of s domain network.
 - B Derive the transform impedance and of induction and capacitor.
 - C Find the dimming point impedance of the given one port network shown in fig 6.

Fig 6

Section B

Q.6 Solve any five

10

05

05

05

05

05

05

05

05

- i. Define pole and zero of a network function.
- ii. Write the Y parameter of two port network.
- iii. Define RMS value of an alternating quantity.
- iv. List the network function of two port n/w
- v. Test whether the following represent driving point immittances $\frac{S^2 + 3S + 2}{S^2 + 6S + 9}$
- vi. What is complex frequency?
- vii. What is Fourier series? What are the applications of Fourier transform.
- viii. What is physical significance of reactive power?
- Q.7 A If I(s) = $\frac{3s(s+2)}{(s+1)(s+4)}$ plot poles and zeros in s plane and obtain time domain response i(t)
 - B Plot the poles and zeros of the network function $F(s) = \frac{s(s+1)}{(s+3)(s^2+4s+5)}$ 05
 - C Derive the inter conversion to connect h parameter into z parameters.

2017

Q.8 A Find h parameters for the network

Fig 7

- B State the limitations on pole and zero location in transfer function of two port network.
- C What is the power transfer optimization what are the problems in optimizing power transfer
- Q.9 A Find the Fourier coefficients of waveform f (t).

- B Write short note on insertion loss
- C Explain in detail average power and complex power.
- Q.10A Find the network functions $\frac{V_1}{I_1}$ for the network fig. 9

B For the following network show.

$$\frac{v_2}{v_1} = \frac{1}{s^2 + 3s + 1}$$
 in fig.10

05

05

05

05

05

05

05

05

C Write short note on half wave symmetry.

าร