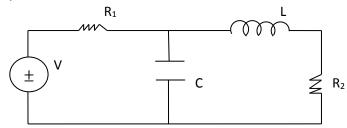
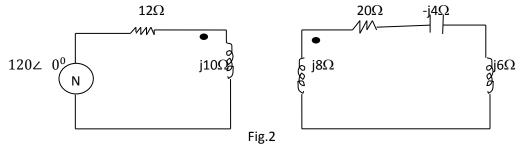
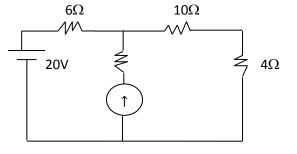
## SUBJECT CODE:- 124 FACULTY OF ENGINEERING AND TECHNOLOGY S.E. (EEP/EE/EEE) Examination Nov/Dec 2015 Network Analysis (Revised)


## [Time: Three Hours]

N.B


- "Please check whether you have got the right question paper."
- i) Use suitable data if required.
  - ii) Q.No.1 from section A and Q.No.6 from section B are compulsory.
  - iii) Solve any two questions from remaining questions from each section A and B.

## Section- A

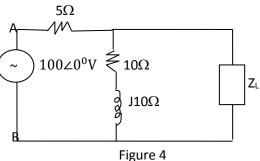

- Q.1 Solve any five
  - i) Define lumped and distributed network.
  - ii) Fund the Laplace transform of unit step function.
  - iii) State superposition theorem and its application.
  - iv)Enlist the applications of Laplace transform.
  - v) Draw the voltage control voltage source and voltage control current source.
  - vi) Write the differential equation for the series RLC circuit.
  - vii) Define convolution integral
  - viii) Draw the dual of the network



Q.2 A Find the input impedance for the circuit shown in fig.2



B Find the current is various tranches in the network the concept of super mesh in figure 3.





[Max. Marks: 80]

10

05

C In the network of figure 4 find the impedance as sun from terminals A & B if  $Z_L$ =10j 10 $\Omega$  in figure 4





- B Explain the concept of source transformation in the analysis of the electrical networks.
  - C Find the voltage of nodes 1 and 2 in the network of figure 5

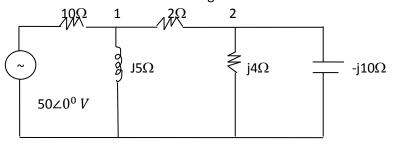



Fig.5

Q.4 A In the circuit of figure 6 the initial current is zero. Find the source current after closing of switch s.



<sup>B</sup> For the circuit shown in fig 7 the switch is closed at t=0 find i(o<sup>+</sup>),  $\frac{di(0^+)}{dt}$ ,  $\frac{d^2i(0^+)}{dt^2}$ 

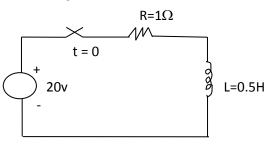
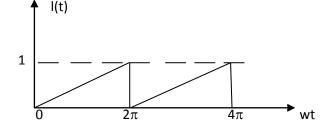



Fig.7 C State and explain reciprocity theorem

05

05

05


05

05 05

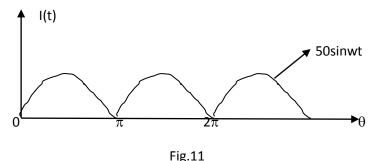
| Q.5 A | A An RC series has R=2 $\Omega$ and c=0.25f find current response if the during voltage is step voltage $\alpha$ u(t-3)                                                                                                              | 05 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | An impulse voltage 10 $\delta(t)$ is applied to a series RC circuit having R=2 $\Omega$ and c=0.5f. find                                                                                                                             | 05 |
|       | a) Time constant b) i(t) c) i(t) at t=0 and t= $\infty$                                                                                                                                                                              |    |
| C     | C The current through a 2f capacitor is given by the following 5 domain equation.                                                                                                                                                    | 05 |
|       | $Z(s) = \frac{24(s+1)(s+3)}{(s+2)(s+4)(s+5)}$ . Find voltage across the capacitor                                                                                                                                                    |    |
|       | (S+2)(S+4)(S+5)<br>Section- B                                                                                                                                                                                                        |    |
| Q.6   | Solve any five                                                                                                                                                                                                                       | 10 |
|       | i) Draw the i) T-network ii) Lattice network                                                                                                                                                                                         |    |
|       | ii) What is Fourier seris                                                                                                                                                                                                            |    |
|       | iii) State the z parameter of two port network                                                                                                                                                                                       |    |
|       | iv) write y parameters In terms of z parameters                                                                                                                                                                                      |    |
|       | v) A function is given by $2^{2s}$                                                                                                                                                                                                   |    |
|       | $P(s) = \frac{2s}{s^2+4}$ draw its pole zero plot.                                                                                                                                                                                   |    |
|       | vi) Differentiate between one port and two port networks                                                                                                                                                                             |    |
|       | vii) What is s domain networks?                                                                                                                                                                                                      |    |
| 07/   | Viii) Obtain the s domain equation of series RL circuit with no initial current?<br>A Find the h parameters for the networks.                                                                                                        | 05 |
| Q.7 F | R                                                                                                                                                                                                                                    | 05 |
|       |                                                                                                                                                                                                                                      |    |
|       |                                                                                                                                                                                                                                      |    |
|       | c                                                                                                                                                                                                                                    |    |
|       | V <sub>1</sub> V <sub>2</sub>                                                                                                                                                                                                        |    |
|       |                                                                                                                                                                                                                                      |    |
|       | Figure 0                                                                                                                                                                                                                             |    |
| F     | Figure .8<br>3 Find z parameters for the circuit in figure 9.                                                                                                                                                                        | 05 |
| Ľ     |                                                                                                                                                                                                                                      | 05 |
|       | $\xrightarrow{I_1} \mathcal{M}_{2\Omega} \qquad \qquad \mathcal{M}_{2\Omega} \qquad \qquad I_2 \qquad \qquad$ |    |
|       | $V_1 \rightarrow I\Omega \qquad V_2$                                                                                                                                                                                                 |    |
|       | ÷ -                                                                                                                                                                                                                                  |    |

C What is mean by poles and zeros of a network function?

Q.8 A Find the exponential Fourier seris of the given waveform in fig 10



B Write short note on half wave symmetry


C A coil draws 5 amps when connected to 100v 50Hz supply. The resistance of the coil is 5 $\Omega$ . Determine

05 05

05

1) Inductance of the coil 2) Real power reactive power, appetent power of the coil.

Q.9 A The current of the following waveform is passed through 5 $\Omega$  resistance. Find power consumed (Fig.11) 05



B Obtain the transmission parameters for the circuit shown in figure 12

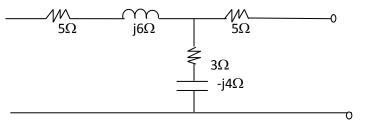



Fig.12

C Explain different types of inter connection of two ports.

Obtain the transform impedance z(s) of the network  $z(s) = \frac{V(s)}{Z(s)}$  with zew initial condition, transform the 05 Q.10A network into s-domain (fig.13) 1H  $4\Omega$ 🖌 Zin  $1\Omega$ 1f Figure 13

- B Explain necessary conditions for transfer functions.
- C For the given network function? Draw pole zew plot and obtain time response u(t)

$$Z(s) = \frac{2s}{(s+1)(s+2)}$$

05

05