SUBJECT CODE NO:- P-65 FACULTY OF ENGINEERING AND TECHNOLOGY T.E.(EEP/EE/EEE) Examination May/June 2017 Control System Engineering (Revised)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

N.B

- i) Attempt any three questions from each section.
- ii) Q.no.1 & Q.no.6 are compulsory:
- iii) Solve any two questions from remaining from each section.

Section A

Q.1 Solve any five.

10

80

- a) Give the important features of feedback.
- b) Give the advantages of open loop system.
- c)What is time variant & time invariant?
- d)List the steps to reduce the block diagram.
- e)Define self loop and loop gain.
- f)What is difference between type & order of system?
- g)What is acceleration error coefficient?
- h)Define Rise time and settling time.
- Q.2 a) Obtain the close loop transfer function C(S)/R(S) of the system as shown in fig 1.

 $R(S) \xrightarrow{+} G_1 \xrightarrow{+} G_2 \xrightarrow{+} G_3 \xrightarrow{+} (CS)$

Fig. 2

Q.3 a) Derive the expression and draw the response of the first order system for unit step input.

08

07

b)The open loop transfer function of a servo system with a unity feedback is given by-

$$G(S) = \frac{10}{(S+3)(S+6)}$$

Determine the damping ratio, undamped natural frequency of oscillation. What is percentage overshoot of the response to a unit step input.

Q.4 a) Explain the DC servomotor working.

07

b)Find the static error coefficients for a system whose

80

G(S) H(S) =
$$\frac{10}{S(1+S)(1+2S)}$$

Also find the steady state error for $r(t)=1+t+t^2/2$

Q.5 a)A feedback system by the following transfer function.

08

$$G(S) = \frac{12}{S^2 + 4S + 16}$$
, $H(S) = Ks$

The damping factor of the system is 0.8. Determine the overshoot of the system & the value of K.

b)The characteristics equation of feedback control system is

$$S^4 + 20S^3 + 15S^2 + 2S + K = 0$$

07

Determine the range of K. For marginally stable find the frequency of sustained oscillation.

Section B

Q.6 Solve any five.

10

- a) What is called a PID controller.
- b) Define gain margin.
- c) What are compensators?
- d) List advantages of Bode plot.
- e) What is meant by frequency response of system?
- f) Define BIBO stability.
- g) What is centroid? How the centroid is calculated.
- h) Define absolute and relative stability?
- Q.7 A unity feedback control system has an open loop transfer function.

15

$$G(S) = \frac{K}{S(S^2 + 4S + 13)}$$

2017

Sketch the root locus.

Q.8 Sketch the bode plot and hence find gain crossover frequency, phase crossover frequency, gain margin & 15 phase margin

$$G(S) = \frac{10}{S(1+0.4S)(1+0.1S)}$$

Q.9 a)The state space of a system is represented by the following equations.

07

08

07

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ u ; t>0}$$

$$y=\begin{bmatrix}1 & 0\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}$$

Find the transfer function of the system.

b)Find state transition matrix of following system.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathsf{u(t)}$$

Q.10 a) Check the observability of the system.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} x$$

b) Explain Rules for root locus plotting.