[Total No. of Printed Pages:2]

CODE NO:- Z-276

FACULTY OF ENGINEERING & TECHNOLOGY

TE (EEP/ EE/ EEE) Year Examination –June – 2015

Electrical Machine Design

(Revised)

[Time: Three *Hours*]

[Max. Marks:80]

10

15

"Please check whether you have got the right question paper."

- *i) Q.* 1 & *Q.* 6 are compulsory.
- *ii)* Attempt <u>any two</u> questions from remaining questions of each section.
 - *iii) Assume suitable data wherever necessary*

SECTION-A

Q.1 Attempt <u>any five</u>

- a) Enlist different design circuits & Electrical machines.
- b) What is the signification of standardization and specification in Electrical machine design.
- c) What do you mean by gap contraction faster?
- d) Why it is difficult to calculate mmf for air gap of a slotted machines.
- e) What is the significance of carter's coefficient in Electrical machine design?
- f) What are the advantages of semi enclosed slots provided in a stater of induction motor?
- g) Explain the significance of output coefficient in rotating machine.
- h) What do you mean by magnetic leakage and fringing?
- Q.2 a) What do you mean by real and apperent flux density? Derive the relation between them 07
 b) Calculate the m m f required for the airgap of machine having core length 0.32M including 4 ducts & 08
 10 mm each , pole are =0.19M . slot pitch 65.4 MM slot opening 5 MM , airgap length 5 MM Flux pet pole 52 mwb . Given carters coefficient is 0.18 for opening /gap =1& 0.28 opening /gap =2
- Q.3 a) Explain the various factors which gives choices of stater slots in 3 –ph induction motor . 07
 b) In the design of 30KN , 3ph ; 440V, 50hz delta connected induction motor. Assume the specific electric 08 loading of 23000ac/m, specific mag loading of 0.45wb/m² full load efficiency 85 % & p.f 0.86winding factor 0.955. Estimate the stater core dimensions , no of slots and winding turns .
- Q.4 a) Explain the various factors that gives the .selection of rotor slots in 3- ph induction motor 07
 b) Estimate the main dimensions , air gap length no of stator slots ;turn per phase and cross sectional area 08 of statorconductor for 3-ph , 20 Hp , 400 v, 6 pole , 50 H2 , 970rpm induction motor suitable for star/ delta starting .Assume Bar = 0.45 wb/h2 . ac =23000 ac/m full load efficiency 0.88 and pf=0.89.

Q.5 Solve <u>any three</u>

- a) Choice of of air gap length in induction motor
- b) Different species of computer aided design of rotating machine .
- c) Design of ending of sq. cage induction motor.
- d) Calculations of m m f for iron Dath.
- e) Limitations in the design of Elestrical machines

SECTION-B

Q.6		Attempt any five	10
		a) Define heating and cooling time constant .	
		b) Give two comparisions of Distrbution & power transformer.	
		c) What is the significance of window space facter in transormer ?	
		d) Enlist the various cooling methods of transformer.	
		e) The ratio of fulx to full load m m f in 400 KVA , 50 H2 , 1 – phase transfromer is 2.4 \times	
		10^{-6} .Calculate value of contant K.	
		f) Explain the adavantages of stepped core used in transformer.	
		g) En list the different types of winding prmided in transformer.	
		h) Explin the couses of temp . rise intransfromer	
Q.7	a)	Derive the output equction of 3-ph transforms.	07
	b)	A 3-ph, 50 H2, oil cosled core type transformer Has following dimensions.	08
		Distance between core centres $=0.2m$	
		Hight of window =0.24 m	
		Dia of cirumscribing circle =0.14 m	
		$BM=1.25 wb/M^2$	
		$\delta = 2.5 A / MM^2$	
		Estmate the KVA rating.	
		Assume KW =0.2, Ai = $0.56d^2$ for 2 stepped core.	
Q.8	a)	What is the significaree of constant K in transformer ?Show that $Et = K\sqrt{KVA}$.	07
	b)	A 250 KVA, $200v/400v$, $50Hz$, 1-phase core type power transformer with following data Et =15v	08

b) A 250 KVA, 200v/ 400 v ,50Hz ,1-phase core type power transformer with following data Et =15v (08); Bm=1.25 wb/m²; $\delta = 2.75A / mm^2$, Kw =0.3, $\frac{Hw}{Ww} = 3$ Determine the main dimensions & core and yoke .

15

- Q.9 a) Explain in detail various cooling methods prioded for cooling of different types transformer
 Derive the expression for calculation of total no of cooling tubes provided on transfromer tank .
 08
- Q.10 Attempt <u>any three</u>
 - a) Explain Evaluation of resistance in transformer .
 - b) Explain the chioce of max fulx density on & current density on design of transfrmer.
 - c) Explain the conservator & breater with diagram.
 - d) Explain the design of choke .
 - e) Explain the Development of various force in trnsformer under short ckt condition .