SUBJECT CODE NO:- P-32 FACULTY OF ENGINEERING AND TECHNOLOGY T.E.(EEP/EE/EEE) Examination May/June 2017 Electromagnetic Fields (Revised)

[IIme	e: Inree Hours]	(S:8L
	Please check whether you have got the right question paper.	
N.B	i)Q.No.1 and Q.No.6 are compulsory.	3
	ii)Attempt any two other questions from the remaining questions of each section.	7
	iii)Assume suitable data wherever necessary.	
	Section A	
Q.1	Attempt any five	10
	i)What do you mean by scalar and vector field.	
	ii) \bar{A} = 4ax +6ay	
	\overline{B} =2ax +3ay -2az	
	Find $ar{A} imes ar{B}$	
	iii) Give the expression for differential vector length in Cartesian, cylindrical and spherical co-ordinate system	_
	\$2.54.50.40.50.50.50.50.50.50.50.50.50.50.50.50.50	1.
	iv) A charge of 7 μc located at the centre of sphere of radius 6cm. What is the flux passing through the	
	sphere.	
	v) State Coulomb's law.	
	vi) Transfer the co-ordinates of point P(2,3,-4) to spherical co-ordinate.	
	vii) What do you mean by gradient.	
	viii) Define Electric dipole and dipole moment.	
Q.2	a)Transfer the following vector to cylindrical co-ordinates.	07
	F=10ax-8ay+6az at P(10,-8,6)	
	b)Derive the expression for electric field intensity due to line charge located along z-axis of infinite extent.	80
Q.3	a)State and explain Gauss's Law? What do you mean by Gaussian surface?	07
	b)In a free space line charge q=100nc/m lies along entire z-axis. find Electric field intensity at P(4,3,2)	08
Q.4	a)What do you mean by divergence. Give its physical significance. Also state divergence theorem.	07
65	b)In free space let D=8xyz ⁴ ax+4x ² z ⁴ ay + 16x ² yz ³ az pc/m ²	08
	Find total electric flux passing through the rectangular surface z=2, 0≤x≤2, 1≤y≤3, in the az	
55.5	direction.	
Q.5	a)Derive the expression for potential and Electric field due to dipole.	07
19,0	b)Given the potential field.	08
500	V=x²yz+20y² volts in free space	
	Find a)Vat P	
	D) EP C C C C C C C C C C C C C C C C C C	
	$c)\frac{dv}{dN}$ at P	
	d d d d d d d d d d	
	Section B	
66	Calva and final Cala	10

	i)State ampere's circuital law.	
	ii)What do you mean by steady magnetic field? What are the sources of steady magnetic field.	1990
	iii)What are the properties of perfect metallic conductor?	306
	iv)Define scalar magnetic potential .	(4) P
	v)State Faraday's law of Electromagnetic induction.	
	vi)What do you mean by Capacitance? Write the expression for parallel plate capacitor.	32 36 3
	vii)Define self and mutual inductance.	100 00 m
	viii)Define polarization in dielectric.	
Q.7	a)State and Explain Biot Savart law for steady magnetic field.	07
	b)Find the incremental field ΔH at point P ₂ caused by source at P ₁ of $I \Delta \bar{L} = 2\pi a \bar{z} \mu A/m$. given P ₁ (4,0,0) and P ₂ (0,3,0)	08
Q.8	a)Derive the expression for magnetic field intensity in free space due to infinite filament carrying current I in z- direction.	07
	b)Calculate value of vector current density J in Cartesian co-ordinates at P(4,3,4) if $\overline{H} = x^2 zay - y^2 xaz$	80
Q.9	a) For a time varying field show that $\Delta XE = -\frac{\partial \beta}{\partial r}$	07
	b)Evaluate the closed line integral of \overline{H} about a rectangular path	08
	$P_1(2,3,4)$ to $P_2(4,3,4)$ to $P_3(4,3,1)$ to $P_4(2,3,1)$ to P_1 given H= 3zaz-2x ³ az A/m	
	1 (2) 5) 1) to 1 2(1) 5) 1) to 1 3(1) 5) 2) to 1 4(2) 5) 2) 30 1 1 3. (1) 5) 2) 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	
Q.10	Attempt any three	15
	i)Explain the nature of dielectric material	
	ii)Derive the boundary conditions at the interface between two different magnetic material.	
	iii)Explain Uniqueness theorem	
	iv)State and explain Stoke's theorem.	