SUBJECT CODE:- 290

FACULTY OF ENGINEERING AND TECHNOLOGY

T.E.(EEP/EE/EEE) Examination Nov/Dec 2015

Electromagnetic Fields (Revised)

[Time: Three Hours] [Max. Marks: 80]

		"Please check whether you have got the right question paper."	
N.B		i) Q. no 1 and Q. No. 6 are compulsory.	
		ii) Attempt any two questions from Q. No 2 to Q. no 5	
		iii) Attempt any two questions from Q. no 7 to Q. no 10	
		iv) Assume suitable data wherever necessary.	
		Section A	
Q.1	Attempt a	any five	10
	i)	Define scalar and vector field. Give its two examples.	
	ii)	Define electric flux and electric flux density. Write relation between E and D	
	iii)	What is electric dipole and dipole moment state its unit.	
	iv)	Given two points $A(2,3,-1)$ and $B(4,25^0,120^0)$ find spherical coordinates of A and cartesian coordinates of B.	
	v)	Show that $A = 4ax-2ay-az$ and $B = ax+4ay-4az$ are perpendicular.	
	vi)	Define the potential. Distinguish between potential and potential difference.	
	vii)	The point charges Q1=30 nc, Q2=150nc. And Q.3=-70nc, are enclosed by a surface S what net flux crosses surface S.	
	viii)	State guass law. What do you mean by guassion surface.	
Q.2	a) F	ind the angle between	05
	Α	=5.8 ay+1.55az and B= -6.93 ay+4.0az using both dot product and cross product	
	b) T	ransfer the following vector to cylindrical co-ordinate. F=10ax - 8ay + 6az at point P(10,-8,6)	06
	c) S	tate Coulomb's law and deduce the vector form of force between two point charges.	04
Q.3		perive the expression of Electric field intensity due to infinite long & line charge of placed along z-axis.	07
		line charge of $2\pi nc/m$ lies along y-axis while surface charge densities of 0.1 and -0.1 nc/m ² exists on lane z=3 and z=-4 respectively find E at (1, -7, 2).	80
Q.4		tate and explain divergence theorem	06
	b) G	Given $D=rac{5r^2}{4}$ ar c/m^2 in spherical co-ordinate. Evaluate both the sides of divergence theorem for the	09
	V	olume of sphere enclosed by r=4.	
Q.5		perive the expression for potential and elective field at any point P in free space due to electric dipole.	07
	b) G i)	Given the potential field $V=x^2yz+20y^2$ volts in free space find at point P(1,2,3)	08
	יי ii		
	''. iii	, av	
		· un	

iii) iv)

v)

D Εv

SECTION-B

Q.6	Attempt any five		10	
	i)	State continuously equation of current in integral and differential form		
	ii)	State the properties of perfect metallic conductor		
	iii)	Define magnetic field intensity and state its unit		
	iv)	Define vector magnetic potential and state its unit		
	v)	Compare self and mutual inductance		
	vi)	State Uniqueness theorem.		
	vii)	What is the significance of displacement current		
	viii	Justify the expression $ abla.B=0$		
Q.7	a)	Derive the boundary condition of the normal and tangential components of electric field at the interface of two different dielectric material	08	
	b)	The vector current density is given by $J=\left(\frac{4}{r^2}\right)cos\theta\overline{ar}+20e^{-2r}sin\theta\overline{a\theta}-rsin\theta cos\theta\overline{a}\emptyset(A/m^2)$ find the	07	
		total current passing through the spherical cap r=3, $0 \le \theta \le 20^{\circ}$, $0 \le \emptyset \le 2\pi$ in ar direction.		
Q.8	a)	Derive an expression for magnetic field intensity due to infinite long current carrying filament at any point	08	
		P in free space		
	b)	Calculate value of vector current density in cylindrical co-ordinate at point $P(1.5, 90^0, 0.5)$ if $H = 0.00$	07	
		$\frac{2}{\varrho}\cos(0.2\emptyset)a\varrho$		
Q.9	a)	State and explain stokes theorem	05	
Q .3	-	Working in cylindrical co-ordinate with the field $A=2\varrho^2(Z+1)sin^2\emptyset$ $a\emptyset$, evaluate both sides of stokes	10	
	~,	theorem for the portion of cylindrical surface define by $\varrho=2,\frac{\pi}{4}\leq\emptyset\leq\frac{\pi}{2},1\leq2\leq1.5$ and for its		
		perioneter. Let $\overline{ds} = dsa\varrho$.		
Q.10	•	t any three	15	
		State Maxwell's equation in differential form		
	b)	State and explain Amperes circuital law		
	c)	Magnetic boundary conditions		
	d)	Scalar magnetic potential		
	e)	Polarization in dielectric		