SUBJECT CODE NO:- P-132 FACULTY OF ENGINEERING AND TECHNOLOGY T.E.(EEP/EE/EEE) Examination May/June 2017 Power Systems Analysis (Revised)

[Time: Three Hours] [Max.Marks:80]

N.B

- i. Question No.1 & question No.6 are compulsory.
- ii. Attempt from each section any two questions from the remaining questions
- iii. Assume suitable data wherever necessary

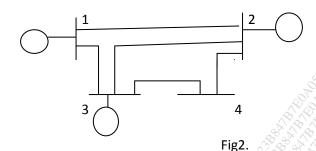
Section A

Q.1 Solve any five questions.

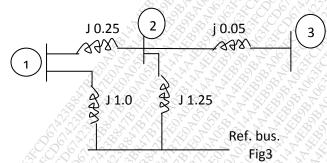
10

- i) What are the components of power system? Write the equation for converting the p.u impedance expressed in one base to another.
- ii) What are advantages of per unit computations?
- iii) If the reactance in ohms is 15Ω , find the p.u value for a base of 15KVA and 10 kv.
- iv) What is bus admittance matrix?
- v) What are four ways of adding an impedance too an existing system so as to modify bus impedance matrix?
- vi) How a load flow study is performed?
- vii) What is need of slack bus?
- viii) Why. Do we go for iterative methods to solve load few problems?
- Q.2 a) Choosing a common base of 20 MVA, compute the p.u reactance of the power system. Shown in 8 fig1. And draw the reactance diagram.

 G_1 : 20MVA, 10.5KV, X"=1.4Ω G_2 : 10MVA, 6.6KV, X" = 1.2 Ω


 Tr_1 : 10MVA, 33/11KV, X = 15.2 ohms per phase on HT side Tr_2 : 10MVA, 33/6.2 KV,X = 16.0 ohms per phase on HT side

TL: 22.5 ohms per phase.


b) Derive the expression for per unit impedance referred to base value

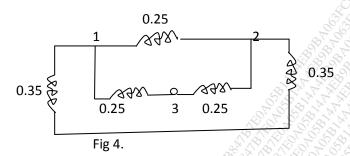
7

- Q.3 a) Derive the expression for primitive network.
 - b) For the power system as shown in fig2. Obtain the B, B^ & K . Take ground as reference.

- Q.4 a) Explain the step by step procedure for NR method of load flow studies.
 - b) Find the bus impedance matrix for the system whose reactance diagram is as from in fig 3. All the 7 impedances are in p.u

- Q.5 a) Derive an expression for symmetrical components of current.
 - b) Write the advantages of fast decoupled methods over other methods.

Section B


8

7

10

- Q.6 Solve any five questions of the following
 - i) How the reactive power of a generator is controlled?
 - ii) What is meant by fault?
 - iii) Name the difference in representation of power system for load flow & short circuit studies
 - iv) What is the reason for transient during short circuits?
 - v) What is the significance of sub transient reactance in short circuit studies?
 - vi) How symmetrical faults are analyzed?
 - vii) Why the circuit breaker interrupting current is asymmetrical? Write equation.
 - viii) What are the complex number operator properties?
- Q.7 a) Explain the phenomenon of transient on transmission line with waveform
 - b) A delta connected impedance load takes 10<30° A and 15<-60° A currents in its terminals a & b. 7 find the current in terminal c and determine the sequence components for each line.

- Q.8 a) Explain Z _{Bus} Building. For Type 3 & Type 4 modification.
 - b) Build Z Bus, by using Z Bus algorithm for the network shown in fig4

- Q.9 a) Derive an expression to determine fault current for line to line fault and draw the sequence network.
 - b) Determine the fault current and MVA at faulted bus for a line to ground fault at bus 4 as shown in 7 figure 5.

$$G_2, G_2 : 100 \text{ MVA}, 11\text{KV}, x' = x'' = 15\%,$$

 $x_0 = 5\%, x_n = 6\%$
 $T_1, T_2 : 100\text{MVA}, 11\text{KV}/220\text{KV}$
 $x \text{ network} = 9\%$

$$L_1, L_2 : X^{'} = X^{''} = 10\%, X0 = 10\%$$

All values are on 100MVA base, 11kv

- Q.10 a) Explain the static security analysis at control centers.
 - b) Explain the sequence impedance of synchronous machine.