SUBJECT CODE NO:- P-262 FACULTY OF ENGINEERING AND TECHNOLOGY F.E. Examination MAY/JUNE-2016 Engineering Mathematics-II (Revised)

[Time:Three Hours]

N.B

- "Please check whether you have got the right question paper."
- Q.No.1 and Q.No.6 are compulsory.
 - ii) Attempt any two questions from remaining questions from each section.
 - iii) Figures to the right indicate full marks.
 - iv) Assume suitable data, if necessary.

Section A

Q.1 Solve <u>any five</u> questions from the following:-

a) Evaluate
$$\int_0^{\pi} \cos^3\left(\frac{t}{2}\right) \sin^4 t \, dt$$

- b) Evaluate $\int_0^2 x^3 \sqrt{2-x} dx$
- c) Find the mean value of the ordinates of a semicircle of radius 'a'.
- d) Evaluate $\int_0^1 \int_0^x e^{\frac{y}{x}} dy dx$
- e) Change the order of integration $\int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx dy$
- f) Evaluate $\int_{1}^{2} \int_{0}^{\log r} r \, d\theta dr$
- g) Find the volume of the solid generated by the curve $y = \sin x$ between the x = 0 and $x = \pi$.
- h) The surface area of the solid generated by the revolution of the area bounded by the curve x = f(y), the y-axis and the abscissae y = c and y = d about the y-axis is _____.

Q.2 a) Evaluate
$$\int_0^\infty a^{-4x^2} dx$$

- b) Evaluate $\int_0^1 \int_0^y xy e^{-x^2} dx dy$
- c) Find the surface area of the solid generated by revolving the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the X-axis. 05

a) Evaluate
$$\int_{0}^{2} x(8-x^{3})^{\frac{1}{3}} dx$$
 05

- b) Evaluate $\iint_{R} e^{y^2} dx dy$, over the triangle whose vertices are (0,0), (2,1), (0,1).
- c) Find the area of the larger region bounded by the circle $x^2 + y^2 = 9$ and the straight line $x = 3 y_{.05}$

Q.4 a) Evaluate
$$\int_0^\infty \frac{\sqrt{x}}{25+10x+x^2} dx$$
 05

- b) Change the order of integration and evaluate $\int_0^1 \int_x^{2-x} \frac{x}{y} dy dx$ 05
- c) Find the volume of the cylinder $y^2 = x$ and $x^2 = y$ and z = 0, x + y + z = 2 05

P-2016

Q.3

fef42b729058a5c83fe99157e231c036

05

05

05

10

[Max Marks:80]

- a) Evaluate $\int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{4z-x^2}} dy dx dz$ 05
 - b) Change the polar co-ordinate and evaluate $\iint \frac{dxdy}{4-x^2-y^2}$ over the region bounded by the concentric 05 circle $x^2 + y^2 = 1$ and $x^2 + y^2 = 3$.
 - c) Find the RMS value of $\log x$ over the range x = 1 and x = e.

Section **B**

Q.6 Solve <u>any five</u> from the following:

Q.5

- a) If $f(x) = \frac{x(\pi^2 x^2)}{12}$ in the interval $(-\pi, \pi)$, then find the Fourier coefficients.
- b) If $f(x) = x \sin x$ in the interval $(0,2\pi)$, then find a₀.
- c) If $(x) = 1 x^2$, in the interval (-1,1), then find a_n .
- d) Define the Fourier series expansion and Fourier coefficients of f(x) with period 2L in the interval (C, C+2L).
- e) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$
- f) Find the rank of the matrix A= $\begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$
- g) If the characteristic equation for the matrix A is $\lambda^3 18\lambda^2 + 45\lambda = 0$, then find Eigen values of the matrix A.
- h) Examine whether the following vectors are linearly independent or dependent. $X_1 = (1, 2, 3)$, $X_2 = (2, 4, 6)$
- Q.7 a) Obtain the Fourier series to represent e^x in the interval $0 < x < 2\pi$. 05
 - b) Find Half-range sine series for $x(\pi x)$ in the interval $0 \le x \le \pi$.
 - c) Find the rank of the matrix

	L1	2	-1	31
A =	4	1	2	1
	3	-1	1	2
	L_1	2	0	2 J

Q.8 a) Find the Fourier series for

$$f(x) = 2, -2 < x < 0$$

= x, 0 < x < 2

- b) Find the Fourier series of $f(x) = \cos hax$ in the interval $(-\pi, \pi)$.
- c) Investigate the value of λ and μ , so that the system 2x + 3y + 5z = 9, 7x + 3y 2z = 8, 05 $2x + 3y + \lambda z = \mu$ has
 - i. Unique solution
 - ii. No solution

fef42b729058a5c83fe99157e231c036

05

05

05

05

10

05

- Q.9 a) Solve the following equations
 - 7x + y 2z = 0, x + 5y 4z = 0, 3x 2y + z = 0, 2x 7y + 5z = 0.

05

05

05

05

- b) Find the Fourier series of f(x) = x + 1, -1 < x < 0= x - 1, 0 < x < 1
- c) Find the Eigen values and Eigen vector for the highest Eigen value of the matrix.

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

Q.10 a) Find the Half-range cosine series for the function $f(x) = \cos \lambda x$, $0 < x < \pi$ (If λ is not an integer). 05 b) Verify Cayley-Hamilton theorem for the matrix 05

$$A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
 And use it to find A⁻¹.

c) Examine whether the following vectors are linearly independent or dependent. $X_1 = [3,1,4]$, $X_2 = [2,2,-3]$, $X_3 = [0,-4,1]$

P-2016