Total No. of Printed Pages:3

SUBJECT CODE NO:- H-102 FACULTY OF ENGINEERING AND TECHNOLOGY F. E. (All) (CGPA)

Engineering Mathematics-II (REVISED)

(REVISED)				
[Time:	[Max.Mai	rks:80		
N.B	Please check whether you have got the right question paper. i) Questions numbers 1 and 6 are compulsory. ii) Solve any two questions from remaining of each section. iii) Figures to the right indicate full marks. iv) Assume suitable data, if necessary.			
	Section A			
Q.1	Solve any five from the following.	10		
	a) If $\frac{dy}{dx} + py = q$ where p and q are functions of x then its solution			
	b) Reduce the Bernoulli's equation $x \frac{dy}{dx} + y = x^3 y^6$ to linear differential equation.			
	c) Define the Fourier series for $f(x)$ in the interval $(c, c + 2\pi)$ and writes its Fourier coefficient.			
	d) If $f(x) = e^{-x}$, $x \in (-2, 2)$ then find Fourier coefficient a_0 .			
	e) If $f(x) = x, x \in (0, \pi)$ then find the Half Range Fourier Sine series coefficient b_n .			
	f) Find the equation of tangent at origin to the curve $ay^2 = x^2(a - x)$			
	g) The curve $r = a(1 + sin\theta)$ is symmetric about			
	h) The length of the curve $x = f(t)$, $y = g(t)$ from $t = A$ to $t = B$ is given by	-		
Q.2	 a) Solve (3x² + 6xy²)dx + (6x²y + 4y³)dy = 0 b) Obtain the Fourier series for f(x) = x² in the interval (0,2 π). c) Trace the curve x(y² + x²) = a (x² - y²) with full justification. 	05 05 05		
Q.3	a) Solve $(1 + x^2) \frac{dy}{dx} + y = e^{tan^{-1}x}$	0:		
	b) Find the half range cosine series for $f(x) = x (\pi - x)in(0, \pi)$.	05		
	c) Trace the curve $x^{2/3} + y^{2/3} = a^{2/3}$ with full justification.	0:		

EXAMINATION MAY/JUNE 2018

Q.4

a) A resistance of 100Ω , an inductance of 0.5 henry are connected in series with a battery of -05

		20 volts. Find the current in the circuit at $t = 0.5 \sec if \ i = 0$ at $t = 0$.	300
	b)	Find Fourier series $f(x) = \begin{cases} 2, -2 < x < 0 \\ x, 0 < x < 2 \end{cases}$	05
	c)	Trace the curve $r = a(1 + \cos\theta)$ with full justification	05
Q.5	a)	A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C. Find the temperature of the body after 40 minutes from the original.	05
		Find Fourier series for $f(x) = \pi^2 - x^2$ in the interval $(-\pi, \pi)$ Find the length of one arch of the cycloid $x = a (\theta + \sin \theta)$; $y = a (1 + \cos \theta)$	05
		Section B	
Q.6	Solve	any five from the following	10
	a)	Evaluate $\int_0^\infty e^{-x} x^3 dx$	
	b)	Evaluate $\int_0^{\Pi/6} Sin^3 3 \theta \cos^7 3\theta d\theta$	
	c)	Evaluate $\int_{1}^{e} \int_{0}^{\log y} \frac{1}{\log y} dx dy$	
	d)	Evaluate $\int_0^1 \int_0^2 \int_0^3 x dx dy dz$	
	e)	Change the order of integration $\int_0^1 \int_0^{\sqrt{1-x^2}} f(x,y) dx dy$	
	f)	Find the limits for $\iint xy (x + y) dxdy$ over the area between $y = x^2$ and $y = x$.	
	g)	State the formula to find the volume by triple integration.	
	h)	The surface area of the solid formed the revolution of the curve $x = g(y)$ about y-axis from $y = c$ to $y = d$ is given by	
Q.7	a)	Evaluate $\int_0^\infty a^{-bx^2} dx$	05
	OOK TO	$(1)(\sqrt{1+x^2})$ 1],	05

c) Find the area by double integration between the parabolas $y^2 = 4 ax$ and $x^2 = 4ay$.

05

EXAMINATION MAY/JUNE 2018

Q.8

a) Evaluate
$$\int_0^1 x^5 [\log(1/x)]^3 dx$$

05

b) Change the order of integration

05

$$\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dx dy}{\sqrt{y^4 - a^2 x^2}}$$
 by showing the region.

Q.9

c) Find the volume bounded by the cylinder
$$x^2 + y^2 = 4$$
 and $y + z = 3$ and $z = 0$

a) Prove that
$$\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m,n)$$

b) Evaluate
$$\int_0^a \int_0^{a-x} \int_0^{a-x-y} dz dy dx$$

c) Find the triple integration, the volume of the sphere $x^2 + y^2 + z^2 = a^2$

Q.10

a) Evaluate
$$\int_0^{2a} x^2 \sqrt{2ax - x^2} dx$$
 05

b) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy$$
 by

Changing to polar co-ordinates.

c) Find the surface of the solid generated by revolution of the curve
$$x = t^2$$
; $y = t\left(1 - \frac{t^2}{3}\right)$ about $x - axis$.