[Total No. of Printed Pages:2]

CODE NO:- Z-271

FACULTY OF ENGINEERING & TECHNOLOGY

FE (Engg) Year Examination –June – 2015

Engineering Mathematics -II

(Revised)

[Time: Three *Hours*]

[Max. Marks:80]

"Please check whether you have got the right question paper."

- *i) Question number one & six are compulsory.*
- *ii)* Attempt any two questions from the remaining 4 questions from each section.
- iii) Figures to the right indicate full marks.
- iv) Assume suitable data if necessary.

SECTION-A

Q.1 Attempt any five of the following

- a) Define Gamma function & Evaluate $\int_0^\infty e^{-x} x^2 dx$.
- b) Find the value of $\int_0^\infty \frac{x^3}{(1+x)^4} dx$.
- c) Evaluate $\int_0^{\frac{\pi}{2}} \sin^2 x \, dx$.
- d) Find the mean value of $y = 3x^2$ from x = 0 to 2
- e) The surface area of solid formed the revolution of the curve y = f(x) about x-axis from x = a to x = b.
- f) Change the order of integration $\int_0^1 \int_0^{2\sqrt{x}} f(x, y) dx dy$.
- g) Evaluate $\int_{x=0}^{x=a} \int_{y=0}^{y=x^2} dx \, dy$ h) Evaluate $\int_0^a \int_0^b \int_0^c dx \, dy \, dz$.

Evaluate $\int_{0}^{2a} x \sqrt{2ax - x^2} \, dx$. Q.2 05 05 b

) Evalute
$$\int_0^4 \int_0^{x^2} e^{\frac{1}{x}} dx dy$$
.

c) Find the volume bounded by the cylinder $y^2 = x, x^2 = y$ the plane x + y + z = 2 & z = 0. 05

Q.3 a) Evaluate
$$\int_0^\infty \sqrt[3]{x^2 e^{-\sqrt[3]{x}} dx}$$
.
b) Given it of $\int_0^a \sqrt[6]{a^2 - x^2} dx$.

^(b) Change the order of integration $\int_{-a}^{a} \int_{0}^{a}$ f(x,y)dx dy.c) Find by the double integration the area included between the cures xy = 1 & 2x + 2y = 5. 05

a) Evaluate $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$. Q.4 05

Changing into polar coordinate Evaluate $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2 + y^2) dx dy$. 05 b)

Find the surface of the solid generated by the revolution of the loop of the curve $x = t^2$, $y = t - \frac{t^3}{2}$ 05 c) About *x*-axis.

Q.5 a) Prove that
$$\beta(m,n) = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dt.$$
 05

b) Evalute
$$\int_0^a \int_0^{a-x} \int_0^{a-y-x} x^2 dx dy dz.$$
 05

c) Find the RMS value of $3 \sin 2x$ over a period.

SECTION-B

3e8a1504c0ffae40d8f459564be9ac93

10

05

Q.6 Attempt any five of the following

- a) Define periodic function with example.
- b) If $f(x) = \pi^2 x^2$ over $(-\pi, \pi)$ then write the value of Fourier coefficients a_0 .
- c) What is the half range cosine series for f(x) in the interval (0, L) & Write its Fourier coefficients.
- d) If f(x) = x; $x \in (0,2\pi)$ with period 2π find Fourier coefficients a_n .
- e) Find the rank of AB if $A = \begin{bmatrix} -1 & 2 \\ 3 & 2 \end{bmatrix} \& B \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$. f) State the condition for consistency of system of linear homegeneous equation .
- g) Find the characteristic equation & Eigen value of $A = \begin{bmatrix} 9 & -7 \\ 3 & -1 \end{bmatrix}$.
- h) State Cayley Hamiltion theorem.

Find the Fourier series expansion for $f(x) = \frac{\pi - x}{2}$ in the interval 0 < x < 2x with period 2π . Q.7 05 a) 05 b)

Find the rank of matrix

$$A = \begin{bmatrix} 1 & 0 & -5 & 6 \\ 3 & -2 & 1 & 2 \\ 5 & -2 & -9 & 14 \\ 4 & -2 & -4 & 8 \end{bmatrix}.$$

c) Check the consitency and solve if possible .

$$2x - y - 3x = 8$$
$$-x + 2y + z = 4$$

3x + y - 4z = 0.

Q.8

a)		[1	1	1]	05
	Find the Eigen value & Eigon vector for smallest Eigen value for matrix $A =$	0	2	1.	
		L-4	4	3	
b)	Find the helf non-zero cosine coming for $f(x) = x^2 i x$ the interval $(0, -)$				05

- b) Find the half range cosine series for $f(x) = x^2$ in the interval $(0,\pi)$. 05 Express $f(x) = \frac{x\pi^2}{2}$ as Fourier series defined in $-\pi < x < \pi$. 05

Q.9 a)

Verify Cayley –Hamilton theorem for matrix $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$. Find the Fourier series for $f(x) = \begin{cases} l-x & 0 < x < l \end{cases}$ 05

- 05 b) l < x < 2l .
- c) Check the consistancy and solve,

$$x + y + z = 0$$

$$2x - y - 3z = 0$$

$$3x - 5y + 4z = 0$$

x + 17y + 4z = 0.

Q.10	a)	Find the Fourier series for	$f(x) = a - x^2 \text{ in } (-a, a).$	05
------	----	-----------------------------	---------------------------------------	----

b) Find the nalf range series for $f(x) = \pi x - x^2$ in the interval $(0, \pi)$.

Find the nalf range series for f(x) - nx, $x = \frac{-8}{9} - \frac{4}{9} - \frac{1}{9}$ Prove that given matrix A is orthogonal if $A = \begin{bmatrix} \frac{-8}{9} & \frac{4}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{4}{9} & \frac{-8}{9} \\ \frac{4}{9} & \frac{7}{9} & \frac{4}{9} \end{bmatrix}$. c)

05

05

05

05