SUBJECT CODE :- K-51 FACULTY OF ENGINEERING AND TECHNOLOGY B.E. (Mech) Examination Nov/Dec 2015 Project Management and Operations Research (Revised)

[Max. Marks: 80]

06

[Time: Three Hours]

N.B			"Please check whether you have got the right question paper." i) Attempt three questions from each section. ii) Assume suitable data if necessary iii)Figures to the right indicate full marks SECTION-A	
Q1.	a) b)	An aero pla 900 is made	rations Research' & give its applications ne can carry a maximum of 250 passengers. A profit of Rs.1500 is made on each executive class ticket & a profit of Rs on each economy class ticket. The airline reserves at least 30 seats for executive class. However at least 4 times as engers prefer to travel by economy class then by executive class. Formulate this problem as a LPP & solve graphically.	
Q.2		Solve the fo	llowing LPP using Big. M Method	13
		Minimize z	=2x1+3x2	
		Subject to	x ₁ +x ₂ ≥5	
			X ₁ +2x ₂ ≥6	
			& x1,x2 ≥0	
Q.3		Solve the fo	llowing LPP using two phase simplex method	14
		Maximize	$z=x_1+2x_2+4x_3$	
		Subject to	$2x_1+x_2+x_3 \le 8$	
			$3x_1+2x_2+3x_3 \le 21$	

 $X_1+2x_2+4x_3 \ge 26$

& x1,x2,x₃≥ 0

Q.4 Find the optimum solution to the following transportation problem in which the cell contain the transportation cost in rupees.
 13 Find IBFS using lowest cost entry method

	W 1	W2	W ₃	W 4	W5	available
F ₁	7	6	4	5	9	40
F2	8	5	6	7	8	30
F₃	6	8	9	6	5	20
F4	5	7	7	8	6	10
Required	30	30	15	20	5	

Q.5 a) Find an optimal solution to assignment problem with the following cost matrix

	J ₁	J ₂	J ₃	J4
M1	10	5	5	2
M ₂	9	8	4	3
M ₃	7	7	6	4

	M4	8	7	5	5	
h ۱	The cost of equipment is (2000 & its scrap value is [c 2000 The life of the og	uinmont is 9 years. The m	aintonanco coste for oach	07

b) The cost of equipment is 62000 & its scrap value is Rs. 2000. The life of the equipment is 8 years. The maintenance costs for each 07 year are as given below.

Year	1	2	3	4	5	6	7	8
Maintenance	1000	2000	3500	5000	8000	11000	16000	24000
Cost(Rs.)								

When the equipment should be replaced?

Section B

- Q.6 a) Customers arrive at one person barber shop according to a Poisson process with a mean inter-arrival time of 20 minutes.
 08 customers spend on an average of 15 minutes in the barber's chair. Find
 - i) The probability that a new arrival need not wait for the barber to be free
 - ii) The expected number of customers in the barber shop
 - iii) The time that a customer is required to wait for his turn
 - iv) The time that a customer is required to spend in the shop
 - b) Five jobs are performed first on machine M1 and then on machine M2. Time in hours taken by each jobs on each machine is 06 given below.

		M1	M2
	А	5	2
jobs	В	1	6
	С	9	7
	D	3	8
	E	10	4

Determine the optimum sequence of jobs & find the minimum elapsed time & idle time for both machines.

Q.7 a) Explain the dominance property to find value of game with an example

b) Reduce the following game by dominance & find the game value.

Player B							
		i	ii	iii	iv		
	I	3	2	4	0		
Player A	li	3	4	2	4		
	lii	4	2	4	0		
	iv	0	4	0	8		

05

08

05

Q.8 a) Explain the various costs associated with inventories

- b) A annual demand for an automobile component is 24,000 units. The carrying cost is Re 0.40/units/year, the ordering cost is
 08
 Rs.20.00 per order & the shortage cost is Rs.10.00/units/year. Find
 - i) Economic order quantity ii) Maximum inventory iii) Maximum shortage quantity iv) Cycle time.

Q.9 Table below shows the normal duration & cost and crash duration & cost of the various activities in a project. Find the optimum duration &minimum project cost, assuming the overhead cost of Rs.300 per week

Activity	Normal		Crash	
	Time weeks	Cost Rs	Time weeks	Cost Rs
1-2	2	800	1	1400
1-3	5	1000	2	2000
1-4	5	1000	3	18000
2-4	1	500	1	500
2-5	5	1500	3	2100
3-4	4	2000	3	3000
3-5	6	1200	4	1600
4-5	3	900	2	1600

Q.10

The table below shows the activities & their three time estimates. Draw the network & find the critical path.

1	2
	.5

13

Activity	to	t _m	tp	
1-2	2	5	8	
2-3	17	20	23	
2-4	15	16	23	
2-5	3	11	12	
3-4	0	0	0	
3-6	10	11	12	
4-7	13	15	17	
5-7	7	7	7	
6-7	1	2	3	
7-8	7	10	13	

Z	1.6	1.7	1.8	0
Р%	94.4	96.5	96.9	50

i) What is the probability of work completion in 50 days?

ii) Which duration assures the 95% probability of work completion?