Total No. of Printed Pages:2

SUBJECT CODE NO:- H-1751 FACULTY OF ENGINEERING AND TECHNOLOGY

M.E. (Mechanical)

Advanced Optimization Techniques (REVISED)

[Time: Three Hours] [Max.Marks: 80]

N.B

Please check whether you have got the right question paper.

- 1. Solve any three questions from each section.
- 2. Figure to right indicates full marks.
- 3. Assume suitable data if required and state it clearly
- 4. Use of non-programmable calculator is allowed.

Section A

Q.1 Find the minimum of $f = X(X - \frac{3}{2})$ by starting from 0.0 with an initial step size of 0.05 using exhaustive search methods.

Q.2 Minimize $f(x) = 0.65 - \left[\frac{0.75}{(1+x^2)}\right] - 0.65x \tan^{-1}(\frac{1}{x})$ in the interval [0.3] by the Fibonacci method using n=6.

13

14

13

Q.3 Minimize $f(X) = X_1^2 + X_2^2 + X_3^2 + 40X_1 + 20X_2$ Subject to, $g_1(X) = X_1 - 50 \ge 0$ $g_2(X) = X_1 + X_2 - 100 \ge 0$ $g_3(X) = X_1 + X_2 + X_3 - 150 \ge 0$

Determine whether Kuhn-Tucker conditions are satisfied at the optimum point.

- Q.4 Minimize $f(X_1, X_2) = X_1 X_2 + 2X_1^2 + 2X_1X_2 + X_2^2$ starting from the point $X_1 = \{0\}$ using 13 Cauchy method.
- Q.5 Write a short note on (Any Two)

a) Optimal problem formulation

- b) Optimality criteria
- c) Hessian matrix.

Section B

Q.6 Use two phase simplex method to Maximize $Z = 3x_1 + 2x_2 + 2x_3$ Subjected to, $5x_1 + 7x_2 + 4x_3 \le 7$

 $5x_1 + 7x_2 + 4x_3 \le 7$ $-4x_1 + 7x_2 + 5x_3 \ge -2$ $3x_1 + 4x_2 - 6x_3 \ge 29/7$ $X_1, X_2, X_3 \ge 0$

EXAMINATION MAY/JUNE 2018

- Q.7 Use charms penalty methods to Maximize $Z = 3x_1 x_2$ Subjected to, $2x_1 + x_2 \ge 2$ $x_1 + 3x_2 \le 3$ $x_1 \le 4$; $x_1, x_2 \ge 0$
- Q.8 An aircraft company, which operates out of a central terminal, has 8 aircraft of Type –I, 15 13 aircraft of Type-II and 12 aircrafts of Type-III available for two days flights. The tonnage capacities (in thousands of tons) are 4.5 for Type-I, 7 for Type –II & 4 for Type-III. The company dispatches its plane to cities A and B. Tonnage requirements (in thousands of tons) are 20 at city A and 30 at city B; excess tonnage capacity supplied to a city has no value.

A plane can fly once only during a day. The cost of sending a plane from the terminal to each city is given by the following table.

	Type-I	Type-II	Type III
City A	23	05	1.4
City B	5867	-0 40	3.8

Formulate the model to minimize the air transportation cost.

Q.9 a) What is genetic algorithm

08 05

13

b) Describe simulated annealing

14

- Q.10 Write a short note on (Any Two)
 - a) Global optimization
 - b) Sensitivity Analysis
 - c) Computer program & algorithm.