SUBJECT CODE NO:- P-15 FACULTY OF ENGINEERING AND TECHNOLOGY S.E.(MECH/PROD) Examination MAY/JUNE-2016 Thermodynamics - I

(Revised)

[Time:Three Hours]

[Max Marks:80]

10

06

N.B

i) Q.No.1 and 6 are compulsory.

ii) Solve any three questions from each section.

iii) Use of steam tables is permitted.

iv) Assume suitable data, if required.

Section A

Q.1 Solve any five.

- i) State any three assumption of steady flow process.
- ii) What are limitations of IST law of thermodynamics?
- iii) Derive the equation for Nozzle from S.F.EE.
- iv) Prove that $COP_{HP}=COP_{R}+1$.
- v) What do you mean by heat reservoir? Explain HTR & LTR.
- vi) Represent constant temperature process on P-V and T.S diagrams.
- vii) What do you mean by "available energy".
- Q.2 a) Derive steady flow energy equation on time basis.
 - b) Air flow steadily at the rate of 0.5 Kg/sec through an air compressor, entering at 7m.sec velocity, 09 100kpa pressure and 0.95 m³/kg volume and leaving at 5m/sec, 700 kpa and 0.19 m³/kg. The internal energy of the air leaving is 90 kj/kg greater than that of the air entering. Cooling water in compressor jackets absorb heat at the state of 50kw.
 - a) Compute the rate of shaft work input to the air in kw.
 - b) Find the ratio of inlet pipe diameter to outlet pipe diameter to outlet pipe diameter.
- Q.3 a) Prove the Carnot theorem that "The efficiency of a irreversible heat engine is always less then the 06 efficiency of a reversible energy operating between the same two thermal reservoir".
 - b) A heat pump working on the Carnot cycle takes in heat from a reservoir of 5°c and deliver heat to a 09 reservoir at 60°c. The heat pump is driven by a reversible heat engine which take in heat from a reservoir at 840°c and reject heat to a reservoir at 60°c. The reversible heat engine also drives a machine that consume 30kw. If heat pump extracts 17kj/sec from 5°c reservoir determine.
 - i) Rate of heat supply from 840^oc source.
 - ii) The rate of heat rejection to sink at 60° c.

Q.4	a) 5 b) 5	State and explain the "principle of increase of entropy". State and explain "Clausius theorem".	08 07
Q.5	Write short note in <u>any three</u> .		15
	i)	Concept of flow work.	
	ii)	P M M-II	

- iii) Available and unavailable energy.
- iv) Thermodynamic temperature scale.

Section **B**

Q.6 Solve any five.

- i) What are the limitations of Carnot cycle?
- ii) Write short note on mean effective pressure.
- iii) Define wet steam and superheated steam.
- iv) What are different phases of pure substance state the process of phase transformation bases on heat supplied or rejected?
- v) State the devices used for determining dryness fraction of steam.
- vi) Define fuel and its types.
- vii) What do you mean by stoichiometric air?
- Q.7 a) Derive an expression for mean effective pressure of diesel cycle.
 - b) An engine working on Otto cycle in which upper and lower temperature limits of T_3 and T_1 . If the maximum work per kg of air is to be done, show that the intermediate temperature is given by $T_2=T_4=\sqrt{T_1 \times T_3}$.
- Q.8 a) Derive an expression for enthalpy of wet steam.
 - b) Steam at 8 bar and 250°c is flowing at the rate of 1.5 kg/sec passes through a pipe caring wet steam 11 at 8 bar and 0.98 dry. After adiabatic mixing the flow rate is 2.8 kg/sec. Determine condition of steam after mixing. The mixture is further expanded in a nozzle isentropic ally to a pressure of 4 bars. Determine velocity of steam leaving nozzle.
- Q.9 a) Write short note on.

" Bomb calorimeter"

- b) An engine working on Otto cycle is supplied with at 1.bar and 30^oc, the compression ratio is 7.5. Heat 09 supplied is 2200kj/kg. Calculate the maximum pressure, temperature of the cycle, cycle efficiency and mean effective pressure.
- Q.10 Write short note on (<u>any three</u>)
 - a) Compression of Otto, diesel and dual cycle on the basis of same compression ratio.
 - b) Higher calorific value and lower calorific value.
 - c) Triple point.
 - d) Separating and throttling calorimeter.

10

07

04

06

15