SUBJECT CODE NO:- E-265

FACULTY OF ENGINEERING AND TECHNOLOGY

S.E.(Mech) (CGPA) Examination Nov/Dec 2017 Thermodynamics-I

(REVISED)

[Time:	Three Hours]	[Max.Marks:80]
N.B	Please check whether you have got the right question paper. 1) Q.no.1 & Q.no.6 from section A & B are compulsory 2) Solve any two question from each section A & B 3) Use of steam table & mollier diagram allowed 4) Assume suitable data if required	
	Section A	
Q.1	Solve any five i) Explain flow work ii) Explain control volume iii) Modify SFEE for isentropic turbine iv) State Carnot theorem v) Explain PMM-I vi) Define Available energy vii) Differentiate between steady flow and non flow process	10
Q.2	 a) Explain Heat engine refrigerator and Heat Pump b) 12kg per minute of air is delivered by compressor. The inlet and outlet cond C₁=12m/s, P₁= 1bar and C₂= 90m/s P₂=8 bar . The increase in enthalpy of a through compressor is 150 kJ/kg and heat loss to surroundings is 700KJ/min required to drive the compressor 	ir passing
Q.3	 a) Discuss limitations of first law of thermodynamics b) A cyclic heat engine operates between a source temperature of 1000°c and s of 50°c find least rate of heat rejection per KW net output of the engine 	06 ink temperature 09
Q.4	a) Explain entropy & irreversibilityb) Explain principle of increase in entropy of universe	07 08
Q.5	Write short note on (any three) i) PMM-II ii) Thermodynamics temp. scale iii) Clausius theorem iv) Availability in steady flow and non- flow processes	15

Section-B

Q.6	Solve any five		10
	i)	Explain pure substance	37
	ii)	Write assumptions in power cycles	
	iii)	Define triple point	100
	iv)	Define HCV and n LCV	50
	v)	Draw PV and T-S diagram of Brayton cycle	3,7
	vi)	Explain mean effective pressure	55
	vii)	Explain critical point	39/2
Q.7	a) E	Explain phase change diagram of pure substance	06
		The minimum pressure and temp. in an otto cycle are 100KPa and 27°c the amount of heat	09
		dded is 1500 KJ/KG. calculate pressure & temp. at all point assuming compression atio= 8	
Q.8	a) E	Explain steps to convert volumetric analysis to mass analysis and vice verso	06
		A vessel having capacity of 0.05m^3 contains mixture of saturated water & Saturated steam t 245°c the mas of liquid presents is 10Kg find the followings	09
) Pressure (b) the mass	
	b) Specific volume (d) specific enthalpy (e) sp. entropy	
Q.9	% compo	osition of liquid fuel is C=85% and H ₂ =15% by mass calculate	15
	-	Mass of air required per kg of fuel	
	2) P	Product of combustion by volume is 15% excess air is supplied	
Q.10	Short no	te on (any three)	15
	i)	Orsat apparatus	
	ii)	Ericsson cycle	
	iii)	Throttling calorimeter	
	iv)	Carnot cycle	