[Time: Three Hours]

SUBJECT CODE NO:- P-275 FACULTY OF ENGINEERING AND TECHNOLOGY S.E.(Mech./Prod) Examination May/June 2017 Thermodynamics-II (Revised)

[Max.Marks:80]

	75,58, C, Z, 8, 4, 4, 7, 9, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70	900
	Please check whether you have got the right question paper.	300
N.B	i)Question no. 1 & 6 are compulsory from each section A & B.	1,00
	ii)Solve any two questions from remaining questions in each section A & B.	327
	iii)Steam table, mollier diagram is permitted.	
	iv) Assume suitable data, if required.	
	Section A	
Q.1	Solve any five	10
	i) Write major components of process Boiler.	
	ii) Differentiate between internally fired & external fired boiler.	
	iii) Define equivalent evaporation & factor of evaporation.	
	iv)What is Natural draught?	
	v)List Applications of steam.	
	32 C) 32 C 37 B 38 B	
	vi)Explain Induced draught.	
	vii)Define chimney efficiency.	
	viii)Define nozzle efficiency.	
Q.2	a)A steam generator generates 300 kg of steam per hour at 12.5 bar & 0.97 dry from feed water at	80
	105°C. The coal fired is 2040 kg/hr & its C.V = 27.4 MJ/kg. Find	
	i)equivalent evaporation	
	ii)Boiler efficiency	
	b)Explain Benson Boiler.	07
Q.3	a)Derive the equation for height & diameter of chimney.	07
	b)A Chimney of 16m high is used for discharging maximum exhaust gases	08
~	i)Find the draught produced by chimney in mm of water	
295	ii)if the maximum temp. of gases available is 350°C, find the mass of air supplied per kg of fuel if discharge	
OF A	mass is maximum take atmospheric temperature = 20°C.	
Q.4	a)What are types of draught. Explain Artificial draught.	07
9	b)The inlet condition to a steam nozzle are 10 bar & 250°C. The exit pressure is 2 bar. Assuming the	08
	isentropic condition & negligible inlet velocity determine i)throat area ii)exit velocity iii)exit area	
Q.5	Write short note on (Any three)	15
	i)Effect of back pressure on nozzle characteristics	
	ii) isentropic flow through nozzle	
	iii)Artificial draught	
10,00	iv)Heat losses in boiler.	

Section B

Q.6	Solve any five.	10
	i)Explain jet condenser.	
	ii)List the method used to improve the performance of Rankine Cycle.	300
	iii)What is compressor	
	iv)Define FAD	300
	v)Define swept & clearance volume	199
	vi)Define isothermal efficiency of compressor	
	vii)Explain need of multistage compressor	
	viii) What is intercooler?	
Q.7	a)What are sources of air leakage & what is its effect on performance of condenser. Explain the method used to reduce air leakage.	08
	b)Derive the expression for the mass of circulating water required in condenser.	07
Q.8	a)Explain modified Rankine Cycle.	05
	b)A simple Rankine works between pressure of 30 bar & 0.04 bar. The intial temp of steam is 400°C. Calculate i)Turbine work ii)pump work iii)Cycle efficiency iv)work ratio v)Specific steam consumption.	10
Q.9	a)Derive the condition for minimum work required for two stage reciprocativa compressor with perferintercooling.	ct 07
	b)A single acting, two stage air compressor takes air at 1 bar $\&$ 300k delivers 10.5 kg/minute at 16 bar when running at 440 rpm. Compression $\&$ expansion follows law PV ^{1.3} =c .	80
	Find i)minimum power required	
	ii)isothermal efficiency	
	iii)Free air delivery (FAD)	
Q.10	Write short note on . (Any three)	15
	i)Vacuum pumps	
	ii)Rotary compressor	
	iii)Carnot cycle	
Sp. 7	iv)Effect of inlet & back pressure on performance of Rankine Cycle.	